Easy access for the synthesis of 2-aryl 2,3-dihydroquinazolin-4(1H)-ones using gem-dibromomethylarenes as synthetic aldehyde equivalent

Kereyagalahally H. Narasimhamurthy, Siddappa Chandrappa, Kothanahally S. Sharath Kumar, Kachigere B. Harsha, Hanumappa Ananda and Kanchugarakoppal S. Rangappa*
Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570006, India. E-mail: rangappaks@gmail.com; rangappaks@chemistry.uni-mysore.ac.in; Fax: +91-821-2412191; Tel: +91-821-2419661

Received 17th March 2014 , Accepted 17th July 2014

First published on 22nd July 2014


Abstract

One step synthesis of 2,3-dihydroquinazolin-4(1H)-ones from gem-dibromomethylarenes using 2-aminobenzamide is described. Gem-dibromomethylarenes are used as aldehyde equivalent for the efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones, this synthesis takes shorter reaction time with quick isolation and excellent product yield.


Introduction

Quinazolinone derivatives have drawn considerable attention due to their antidepressant,1a analgesic,1b diuretic,1c antihistamine,2a vasodilating,2b antihypertensive,2c and anti-inflammatory activities.3 They also possess anticancer4 activities like inhibition of tubulin formation,5,6 inhibition against VEGFR2 tyrosine kinase and cell proliferation.7 These N-containing heterocyclic compounds are integral part of many drug molecules and several classical methods for the synthesis of 2,3-dihydroquinazoline-4(1H)-ones are available.8–15

Many transition metals like Sc, Ti, Co, Cu, Zn, Zr, and Ru are used in the synthesis of 2,3-dihydroquinazoline-4(1H)-ones.16a–g In addition, gem-dibromomethylarenes are used as aldehyde equivalent in the synthesis of cinnamic acids,17a cinnamic esters,17b benzimidazoles,18a benzothiazoles18b and aryl oximes.18c In continuation of our studies18a,b,c (Scheme 1), we tried using gem-dibromomethylarenes for the synthesis of 2,3-dihydroquinazoline-4(1H)-ones.


image file: c4ra02312a-s1.tif
Scheme 1 Examples of gem-dibromomethylarenes as aldehyde equivalent in synthesis.

We investigated model reaction between 2-aminobenzamide and gem-dibromomethylarenes under different conditions, and the results are presented in Table 1.

Table 1 Optimization experiments for the synthesis of 3aa

image file: c4ra02312a-u1.tif

Entry Base Equivalent Temp. (°C) Time (h) Yieldb (%) of 3a
a Reaction condition: gem-dibromomethylarenes 1 (1.0 equiv.) and 2-aminobenzamide 2 (1.1 equiv.), (t-BuOK) 1.0 mmol.b Isolated yields after column chromatography.
1 t-BuOK 0.5 0–25 6 Trace
2 t-BuOK 0.5 80 6 45
3 t-BuOK 1.0 80 4 90
4 t-BuOK 1.5 80 4 89
5 DIPEA 1.0 80 6
6 TEA 1.0 80 6
7 DABCO 1.0 80 6
8 DBU 1.0 80 6
9 Pyrrolidine 1.0 80 6 18
10 Morpholine 1.0 80 6 22
11 Piperidine 1.0 80 6 30


Results and discussion

The synthesis of gem-dibromomethylarenes was initiated from the corresponding commercially available methyl analogues using N-bromo succinamide (2.0 equiv.) in carbon tetrachloride with a catalytic amount of benzoyl peroxide (0.2 equiv.) under reflux conditions. A mixture of 1-chloro-3-(dibromomethyl)benzene 1a (1.0 equiv), 2-aminobenzamide 2a (1.1 equiv.), potassium tert-butoxide (t-BuOK) (0.5 equiv.) in anhydrous pyridine and dimethylformamide (3[thin space (1/6-em)]:[thin space (1/6-em)]1 ratio) solvent was stirred at room temperature, but only trace amount of product was obtained even after 6 h of stirring (entry 1, Table 1). Improvement in product yield (entry 2, Table 1) was achieved when the reaction mixture was heated at 80 °C for 6 h. The reaction was monitored by increasing the equivalence of t-BuOK, and the maximum yield was obtained with 1.0 mmol of t-BuOK, and the starting material was consumed in 4 h as indicated by TLC. After workup and purification by column chromatography, 2-(3-chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one 3a was isolated with 90% yield (entries 3 and 4, Table 1), and any increase in the equivalent of base did not influence the yield. Bases, like N-ethyldiisopropylamine, triethylamine, DABCO and DBU, did not promote the reaction (entries 5–8, Table 1), whereas pyrrolidine, morpholine and piperidine gave less yields in 6 h (entries 9–11, Table 1). Both aromatic and heteroaromatic gem-dibromomethylarenes bearing various functionalities, such as chloro, bromo, fluoro, methoxy, ester, tert-butyl and trifluoro methyl, –OTHP, –OTBDMS groups, survived the reaction and provided high yields of corresponding products (Table 2). The reaction of gem-dibromomethylarenes with 2-aminobenzamide yielded corresponding 2,3-dihydroquinazolin-4(1H)-ones, and the proposed reaction mechanism is shown in Scheme 2.
Table 2 2-Aryl-2,3-dihydro quinazolin-4(1H)-ones results
image file: c4ra02312a-u2.tif
Entry (Ar) substratea (1) Yield (1) (%) (2) Product (3) Time (h) Yield (3)b,c (%)
a Substrates are prepared from the commercial methyl analogues by radical bromination.b Isolated yields of product (3).c Literature reported compounds.
1 image file: c4ra02312a-u3.tif 87 R = –H, R1 = –H, 2a image file: c4ra02312a-u4.tif 4 9011
2 image file: c4ra02312a-u5.tif 84 R = –H, R1 = –H, 2a image file: c4ra02312a-u6.tif 4 8815
3 image file: c4ra02312a-u7.tif 78 R = –H, R1 = –H, 2a image file: c4ra02312a-u8.tif 4.5 848
4 image file: c4ra02312a-u9.tif 80 R = –H, R1 = –H, 2a image file: c4ra02312a-u10.tif 4 869
5 image file: c4ra02312a-u11.tif 81 R = –H, R1 = –H, 2a image file: c4ra02312a-u12.tif 4 78
6 image file: c4ra02312a-u13.tif 86 R = Cl, R1 = –H, 2b image file: c4ra02312a-u14.tif 4 85
7 image file: c4ra02312a-u15.tif 84 R = Cl, R1 = –H, 2b image file: c4ra02312a-u16.tif 4 86
8 image file: c4ra02312a-u17.tif 87 R = OMe, R1 = OMe, 2c image file: c4ra02312a-u18.tif 4 90
9 1g R = OMe, R1 = OMe, 2c image file: c4ra02312a-u19.tif 4 81
10 image file: c4ra02312a-u20.tif 77 R = –H, R1 = Cl, 2d image file: c4ra02312a-u21.tif 4 78
11 1e R = –H, R1 = Cl 2d image file: c4ra02312a-u22.tif 4 83
12 image file: c4ra02312a-u23.tif 80 R = –H, R1 = Cl, 2d image file: c4ra02312a-u24.tif 4 79
13 1f R = –H, R1 = Cl, 2d image file: c4ra02312a-u25.tif 4 85
14 image file: c4ra02312a-u26.tif 85 R = –H, R1 = Br, 2e image file: c4ra02312a-u27.tif 4 88
15 1i R = –H, R1 = Br, 2e image file: c4ra02312a-u28.tif 4 89
16 image file: c4ra02312a-u29.tif 45 R = –H, R1 = –H, 2a image file: c4ra02312a-u30.tif 4 60
17 image file: c4ra02312a-u31.tif 84 R = –H, R1 = –H, 2a image file: c4ra02312a-u32.tif 4 75



image file: c4ra02312a-s2.tif
Scheme 2 Proposed mechanism of reaction between gem-dibromomethylarene and 2-aminobenzamide in pyridine/dimethyl formamide.

Conclusion

In summary, this is an effective and efficient method of conversion of substituted 2-aminobenzamide into corresponding 2,3-dihydroquinazolin-4(1H)-ones using gem-dibromomethylarenes under mild reaction conditions. The use of gem-dibromomethylarenes for the direct synthesis of biologically important 2,3-dihydroquinazolin-4(1H)-ones has been indicated. As this reaction provides 2,3-dihydroquinazolin-4(1H)-ones in a single step from gem-dibromomethylarenes, it is one of the easiest pathways for accessing these compounds and the starting material is easily available. This transformation would have many applications in synthetic chemistry.

Experimental section

General information

Melting points were recorded (uncorrected) on a Buchi Melting Point B-545 instrument. Infrared (IR) spectra were recorded using a Jasco FTIR-4100 series. All reagents and solvents used were commercially procured and used as received. The 1H NMR spectra were measured on a Bruker DPX-400 at 400 MHz with TMS as internal standard. The 13C NMR spectra were measured on a Bruker DPX-400 at 100 MHz. The mass spectra were recorded on a JEOL JMS-AX505HA mass spectrometer.
Typical procedure for the synthesis of 2-(4-tert-butylphenyl)-6-chloro-2,3-dihydroquinazolin-4(1H)-one (3f). Potassium tert-butoxide (0.366 g, 0.00327 mol) was added to a suspension of 4-tertiary butylbenzalbromide (1f) (1 g, 0.00327 mol) and 2-amino-5-chlorobenzamide (2b) (0.614 g, 0.0036 mol) in pyridine–dimethyl formamide (6.0[thin space (1/6-em)]:[thin space (1/6-em)]2.0 mL) solvent mixture. The resultant mixture was heated at 80 °C for 4 h. Progress of the reaction was monitored by TLC. The reaction mass was mixed with water then extracted with ethyl acetate (2 × 20 mL), and the organic phase was washed with brine solution and dried over anhydrous sodium sulphate. The organic phase was evaporated and the crude product was purified by column chromatography using silica gel mesh 100–200 (30% EtOAc in hexane).
2-(3-Chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one (3a). White solid; m.p. 188.9–189.9 °C. (Lit.11 189.8–189.9 °C) IR (KBr) νmax 3290, 3199, 1652, 1613 cm−1. 1H NMR (400 MHz, DMSO-d6): δ 8.42 (s, 1H), 7.63–7.60 (m, 1H), 7.53 (s, 1H), 7.47–7.31 (m, 3H), 7.23–7.27 (m, 2H), 6.77 (d, J = 7.6 Hz, 1H), 6.69 (t, J = 7.6 Hz, 1H), 5.77 (s, 1H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 163.9, 147.9, 144.8, 133.9, 133.4, 130.7, 128.7, 127.8, 127.2, 125.8, 117.8, 115.3, 114.9, 66.0 ppm; MS(ESI): m/z = 258.8, HRMS (ESI): calcd for [C14H13ClN2O + H+]: 259.7109, found 259.7105.
2,4-Dichloro, 3-dihydroquinazolin-4(1H)-one (3b). White solid, m.p. 182–184 °C (Lit.15 181–185 °C); IR (KBr): 3337, 3179, 3025, 1661 cm−1. 1H NMR (DMSO-d6, 400 MHz): 8.25 (s, 1H), 7.68–7.65 (m, 3H), 7.50–7.47 (m, 1H), 7.29–7.24 (t, J = 7.5 Hz, 1H), 7.04 (s, 1H), 6.93 (d, J = 6.4 Hz, 1H), 6.71 (t, J = 8.1 Hz, 1H), 6.1 (s, 1H) ppm; 13C NMR (100 MHz DMSO-d6): δ 163.6, 147.5, 136.9, 133.9, 133.5, 132.9, 130.9, 128.9, 128.6, 127.4, 117.6, 114.7, 114.6, 63.3 ppm; MS(ESI): m/z = 293.148, HRMS (ESI): calcd for [C14H11Cl2N2O + H+]: 294.1559, found 294.1556.
2-(Pyridin-4-yl)-2,3-dihydroquinazolin-4(1H)-one (3c). Light yellow solid; m.p.: 187–188 °C (lit.8 not reported) IR (KBr): 2922, 2853, 1674, 1605, cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 8.88 (d, 2H, J = 6.0 Hz), 8.36 (d, 2H, J = 7.5 Hz), 8.17 (d, 2H, J = 4.5 Hz), 7.88 (d, 2H, J = 3.0 Hz), 7.63–7.58 (m, 1H), 5.85 (s, 1H), 5.04 (s, 1H) ppm; 13C NMR (100 MHz, DMSO-d6): δ = 160.93, 147.98, 146.88, 132.95, 126.34, 125.84, 124.46, 120.22, 69.15 ppm; MS(ESI): m/z = 225.245. HRMS (ESI): calcd for [C13H12N3O + H+]: 226.2539. Found 226.2535.
Methyl 4-(4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)benzoate (3d). White solid; m.p.: 200.2–202.4; (lit.9 199.2–202.3 °C). IR (KBr): 3328, 3025, 2930, 1760, 1610 cm−1. 1H NMR (400 MHz, DMSO-d6): δ 8.40 (s, 1H), 7.97 (d, J = 8.3 Hz, 2H), 7.64–7.57 (m, 3H), 7.28–7.22 (m, 2H), 6.75 (d, J = 7.5 Hz 1H), 6.68 (td, J = 7.5, 1.0 Hz, 1H), 5.84 (t, J = 2.1 Hz, 1H), 3.85 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 165.91, 163.36, 147.50, 146.94, 133.40, 129.56, 129.22, 129.22, 127.33, 127.14, 127.14, 117.26, 114.86, 114.43, 65.88, 52.16 ppm; MS(ESI): m/z = 282.294, HRMS (ESI) calcd for [C16H15N2O3 + H+]: 283.3019, found 283.3015.
2-(5-Phenylpyridin-2-yl)-2,3-dihydroquinazolin-4(1H)-one (3e). Light yellow solid; m.p.: 185–186 °C; IR (KBr) νmax 3184.26, 3066.61, 2929.67, 1666.38, 1610.45 cm−1. 1H NMR (400 MHz, DMSO-d6): δ 8.66–8.64 (d, J = 4.8 Hz, 1H), 8.32 (s 1H), 8.09–8.07 (d, J = 8.4 Hz, 2H), 7.95–7.93 (d, J = 8 Hz, 1H), 7.88–7.84 (tt, J = 1.6 Hz, 1H), 7.62–7.58 (m 3H), 7.35–7.32 (m, 1H), 7.26–7.22 (tt, J = 8.4 Hz, 1H), 7.15 (s, 1H), 6.76–6.74 (d, J = 8 Hz, 1H), 6.69–6.52 (tt, J = 8 Hz, 1H), 5.8 (s, 1H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 163.52, 155.57, 149.54, 147.76, 142.41, 138.8, 137.2, 133.3, 127.34, 127.22, 126.45, 122.68, 120.29, 117.13, 114.97, 114.42, 66.18 ppm; MS(ESI): m/z = 301.122, HRMS (ESI) calcd for [C19H15N3O + H+] 302.3498, found 302.3495.
2-(4-tert-Butylphenyl)-6-chloro-2,3-dihydroquinazolin-4(1H)-one (3f). Light yellow solid; m.p.: 180–182 °C; IR (KBr) νmax 3328.91, 3257.55, 2929.67, 1741.60, 1612.38 cm−1.1H NMR (400 MHz, DMSO-d6): δ 8.38 (s, 1H), 7.53–7.52 (d, J = 2.4 Hz, 1H), 7.42–7.38 (m, 4H), 7.27–7.24 (m, 2H), 6.75–6.73 (d, J = 8.4 Hz, 1H), 5.73 (s, 1H), 1.26 (S, 9H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 162.40, 151.13, 146.62, 138.18, 132.96, 126.59, 126.35, 126.20, 125.11, 120.61, 116.31, 116, 66.27, 34.28, 31.04 ppm; MS(ESI): m/z = 314.119. HRMS (ESI) calcd for [C18H20ClN2O + H+] 315.8172 found 315.8170.
6-Chloro-2-(3,4,5-trimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3g). White solid; m.p.: 158–160 °C. IR (KBr) νmax 3274.90, 3197.76, 2964.39, 2929.67, 1654, 1612.33 cm−1. 1H NMR (400 MHz, DMSO-d6): δ 8.36 (s, 1H), 7.54–7.53 (d, J = 2.4 Hz, 1H), 7.29–7.24 (m, 2H), 6.82–6.77 (m, 4H), 5.72 (S, 1H), 3.76 (s, 6H), 3.64 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 162.49, 152.76, 146.73, 137.69, 136.17, 133.02, 126.40, 120.86, 116.42, 116.12, 104.45, 66.73, 59.95, 59.71, 55.92 ppm; MS(ESI): m/z = 348.088, HRMS (ESI) calcd for [C17H18ClN2O4 + H+] 349.7888, found 349.7885.
6,7-Dimethoxy-2-(4-(trifluoromethyl)phenyl)-2,3-dihydroquinazolin-4(1H)-one (3h). Light yellow solid; m.p.: 188–189 °C; IR (KBr) νmax 3301.91, 3197.76, 2925.81, 2852.52, 1649.02, 1618.17 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 8.18 (s, 1H), 7.75–7.67 (m, 4H), 7.08 (s, 1H), 6.91 (s, 1H), 6.35 (s, 1H), 5.77 (s, 1H), 3.72 (s, 3H), 3.65 (S, 3H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 163.44, 153.93, 146.60, 143.07, 141.58, 127.74, 127.54, 125.18, 125.15, 125.04, 109.74, 106.62, 97.99, 65.92, 55.74, 55.34 ppm; MS(ESI): m/z = 352.307, HRMS (ESI) calcd for [C17H16F3N2O3 + H+] 353.3157, found 353.3155.
6,7-Dimethoxy-2-(3,4,5-trimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3i). Light red solid; m.p.: 242–244 °C. IR (KBr) νmax 3353.98, 3197.76, 2937.38, 2837.09, 1654.81, 1620.09, cm−1. 1H NMR (400 MHz, DMSO-d6): δ 7.49 (s, 1H), 7.13 (s, 1H), 6.85 (s, 2H), 6.7 (s, 1H), 6.4 (s, 1H), 5.64 (s, 1H), 3.78 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 163.82, 153.78, 152.83, 152.64, 143.75, 141.55, 137.48, 136.52, 109.79, 108.24, 104.96, 104.80, 97.99, 67.30, 59.91, 55.87, 55.77, 55.69, 55.35 ppm; MS(ESI): m/z = 374.387, HRMS (ESI) calcd for [C19H23N2O6 + H+] 375.3957, found 375.3954.
2-(2-Bromo-5-chlorophenyl)-7-chloro-2,3-dihydroquinazolin-4(1H)-one (3j). White solid; m.p.: 197–198 °C; IR (KBr) νmax 3353.98, 3288.4, 3182.33, 3051.18, 2921.96, 2854.45, 1694.02, 1610.45 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 8.33 (s, 1H), 7.74–7.7 (m, 1H), 7.63 (s, 1H), 7.41–7.38 (dd, J = 2.6 Hz, 1H), 7.29–7.22 (m, 2H), 6.81–6.8 (d, J = 1.2 Hz, 1H), 6.75–6.72 (dd, J = 1.8 Hz, 1H), 6.1 (s, 1H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 162.57, 160.13, 148.35, 141.02, 138.01, 134.65, 129.35, 117.92, 117.6, 116.58, 115.99, 115.75, 113.27, 66.24 ppm; MS(ESI): m/z = 355.589, HRMS(ESI) calcd for [C14H10BrClFN2O + H+] 356.5974, found 356.5971.
7-Chloro-2-(5-phenylpyridin-2-yl)-2,3-dihydroquinazolin-4(1H)-one (3k). Brown solid; m.p.: 208–210 °C; IR (KBr) νmax 3193.9, 3068.53, 2923.88, 2854.45, 2813.95, 1666.38, 1610.45 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 8.66–8.65 (d, J = 4.4 Hz, 1H), 8.45 (s, 1H), 8.11–8.09 (d, J = 8.4 Hz, 1H), 7.95–7.93 (d, J = 8 Hz, 1H), 7.89–7.84 (tt, J = 1.46 Hz, 1H), 7.62–7.56 (m, 4H), 7.43 (s, 1H), 7.36–7.33 (m, 1H), 6.8–6.79 (d, J = 2 Hz, 1H), 6.69–6.67 (dd, J = 2 Hz, 1H), 5.86 (s, 1H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 162.63, 155.48, 149.53, 148.66, 142.04, 138.94, 137.81, 137.37, 137.21, 129.32, 128.35, 127.1, 126.54, 122.69, 120.29, 117.04, 113.62, 113.42, 66.07 ppm; MS(ESI): m/z = 335.787, HRMS (ESI) calcd for [C19H15ClN3O + H+] 336.7949, found 336.7945.
7-Chloro-2-(2,5-dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3l). Light yellow solid; m.p.: 208–210 °C; IR (KBr) νmax 3330.84, 3298.05, 3234.4, 3060.82, 2962.46, 2867.95, 1643.24, 1610.45 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 8.11 (s, 1H), 7.61–7.59 (d, J = 8.4 Hz, 1H), 7.04 (s, 1H), 6.99–6.96 (m, 1H), 6.9–6.87 (m, 2H), 6.817–6.813 (d, J = 1.6 Hz, 1H), 6.67–6.65 (dd, J = 2 Hz, 1H), 5.99 (s, 1H), 3.77 (s, 3H), 3.66 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 162.91, 152.85, 150.36, 148.71, 137.74, 129.58, 129.21, 124.74, 116.92, 113.61, 113.5, 113.34, 112.24, 61.07, 55.99, 55.36 ppm; MS(ESI): m/z = 318.754. HRMS (ESI) calcd for [C16H16ClN2O3+H+] 319.7628, found 319.7628.
2-(4-tert-Butylphenyl)-7-chloro-2,3-dihydroquinazolin-4(1H)-one (3m). Light yellow solid; m.p.: 110–112 °C; IR (KBr) νmax 3332.76, 3170.76, 3031.89, 2925.81, 2831.31, 1656.74, 1608.52 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 8.31 (s, 1H), 8.14–8.1 (dd, J = 2.6 Hz, 1H), 7.6–7.38 (m, 4H), 7.3 (s, 1H), 6.757–6.752 (d, J = 2 Hz, 1H), 6.67–6.65 (dd, J = 2 Hz, 1H), 5.75 (s, 1H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 162.71, 151.17, 148.8, 138.24, 137.72, 129.13, 127.68, 126.55, 125.43, 125.3, 116.9, 113.6, 113.31, 66.33, 34.29, 31.04, 30.84 ppm; MS(ESI): m/z = 314.809, HRMS (ESI) calcd for [C18H20ClN2O + H+] 315.8172, found 315.8170.
7-Bromo-2-(3,4-dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3n). White solid; m.p.: 137–138 °C; IR (KBr) νmax 3298.26, 3182.33, 3070.46, 2956.67, 2923.67, 2923.88, 2852.52, 1700, 1610 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 8.38 (s, 1H), 7.52–7.49 (m, 3H), 7.33 (s, 1H), 7.24–7.2 (m, 1H), 6.94–6.93 (d, J = 2 Hz, 1H), 6.83–6.80 (dd, J = 1.8 Hz, 1H), 5.81 (s, 1H), 3.68 (s, 6H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 162.65, 148.42, 141.06, 134.75, 129.42, 127, 120.44, 118.16, 117.94, 116.63, 115.98, 115.74, 113.57, 66.20, 55.42, 55.36 ppm; MS(ESI): m/z = 363.205, HRMS (ESI) calcd for [C16H16BrN2O3+H+] 364.2138, found 364.2135.
7-Bromo-2-(2-bromo-5-fluorophenyl)-2,3-dihydroquinazolin-4(1H)-one (3o). White solid; m.p.: 206–207 °C; IR (KBr) νmax 3294.36, 3194.33, 3074.5, 2958.67, 2926.86, 2854.53, 1705.1, 1605 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 8.34 (s, 1H), 7.74–7.7 (m, 1H), 7.57–7.55 (d, J = 8.4 Hz, 1H), 7.40–7.37 (dd, J = 3.2 Hz, 1H),7.28–7.23 (m, 2H), 6.963–6.960 (d, J = 1.2 Hz, 1H), 6.89–6.86 (dd, J = 1.8 Hz, 1H), 6.09 (s, 1H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 162.69, 160.91, 148.74, 137.49, 129.39, 128.95, 126.82, 125.16, 119.96, 116.40, 115.28, 115.07, 113.88, 65.75 ppm; MS (ESI): m/z = 400.04, HRMS (ESI) calcd for [C14H10Br2FN2O + H+] 401.0484, found 401.0481.
2-(4-(Tetrahydro-2H-pyran-2-yloxy)phenyl)-2,3-dihydroquinazolin-4(1H)-one (3p). White solid; m.p.: 136–138 °C; IR (KBr) νmax 3327, 3028, 2932, 1738, 1615 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 8.16 (s, 1H), 7.59–7.57 (d, J = 8 Hz, 1H), 7.39–7.37 (d, J = 8 Hz, 2H), 7.23–7.19 (t, J = 7.6 Hz, 1H), 7.02–6.98 (m, 3H), 6.72–6.63 (m, 2H) 5.67 (s, 1H), 5.45 (s, 1H), 3.72–3.67 (m, 1H), 3.52–3.48 (m, 1H), 1.88–1.69 (m, 3H), 1.60–1.48 (m, 4H) ppm; 13C NMR (100 MHz, DMSO-d6): 164.13, 157.07, 148.43, 134.88, 134.86, 133.69, 128.54, 127.78, 117.52, 116.63, 115.39, 114.83, 96.04, 66.79, 61.91, 30.21, 25.11, 18.98 ppm; MS (ESI): 324.14, HRMS (ESI) calcd for [C19H20N2O3+H+] 325.1552, found 325.1550.
2-(4-(tert-Butyldimethylsilyloxy)phenyl)-2,3-dihydroquinazolin-4(1H)-one (3q). White solid; m.p.: 139–141 °C; IR (KBr) νmax 3329.86, 3032.60, 2928.72, 1740.30, 1612.30 cm−1; 1H NMR (400 MHz, DMSO-d6): δ 8.17 (s, 1H), 7.64–7.62 (dd, J = 1.6 Hz, 1H), 7.41–7.39 (dd, J = 2 Hz, 2H), 7.28–7.24 (m, IH), 7.02 (s, 1H), 6.89–6.87 (dd, J = 2 Hz, 2H), 6.77–6.75 (d, J = 8.4 Hz, 1H) 6.71–6.67 (m, 1H), 5.72 (s, 1H), 1.02–0.92 (m, 9H), 0.25–0.15 (m, 6H) ppm; 13C NMR (100 MHz, DMSO-d6): 164.07, 155.77, 148.45, 134.8, 133.69, 128.78, 127.77, 119.97, 117.50, 115.32, 114.81, 66.85, 26.0, 18.38, −4.08 ppm; MS (ESI): 354.17, HRMS (ESI) calcd for [C20H26N2O2Si + H+] 355.1852, found 358.1948.

Acknowledgements

KHN is grateful to UGC, RFSMS Govt. of India for financial support, KSR is grateful to DST, CSIR, for the financial assistance under different projects: no. DST/INT/SA/P-05/2011-12, dated 10-01-12; INT/Indo-Korea/122/2011-12, dated 13.09.2011. no. 01 (2434)/10/EMR-II, dated 28.12.2010; IFCPAR Sanction no. IFC/4303-1/2010-11 dated 22/12/2010.

References

  1. (a) Rexall Drug Co., U.S. Patent 3257397, 1966; (b) K. Okumura, T. Oine, Y. Yamada, G. Hayashi and M. Nakama, J. Med. Chem., 1968, 11, 348 CrossRef CAS; (c) E. Cohen, B. Klarberg and J. R. Vaughan, J. Am. Chem. Soc., 1959, 81, 5508 CrossRef CAS.
  2. (a) V. Alagarsamy, V. R. Solomon and M. Murugan, Bioorg. Med. Chem., 2007, 15, 4009 CrossRef CAS PubMed; (b) J. I. Levin, P. I. Chan, T. Bailey, A. S. Katocs and A. M. Venkatesan, Bioorg. Med. Chem. Lett., 1994, 4, 1141 CrossRef CAS; (c) Instituto De Angeli S. p. A.French Patent M 1893, 1963.
  3. D. A. Erlanson, R. S. McDowell and T. O. Brien, J. Med. Chem., 2004, 47, 3463 CrossRef CAS PubMed.
  4. Y. Xia, Z. Y. Yang, M. J. Hour, S. C. Kuo, P. Xia, K. F. Bastow, Y. Nakanishi, P. Nampoothiri, T. Hackl, E. Hamel and K. H. Lee, Bioorg. Med. Chem. Lett., 2001, 11, 1193 CrossRef CAS.
  5. M.-J. Hour, E. Hamel, L.-J. Huang, K.-H. Lee, S.-C. Kuo, Y. Xia, K. Bastow and Y. Nakanishi, J. Med. Chem., 2000, 43, 4479 CrossRef CAS PubMed.
  6. A. Kamal, E. V. Bharathi, J. S. Reddy, M. J. Ramaiah, D. Dastagiri, M. K. Reddy, A. Viswanath, T. L. Reddy, T. B. Shaik, S. N. Pushpavalli and M. P. Bhadra, Eur. J. Med. Chem., 2011, 46, 691 CrossRef CAS PubMed.
  7. J. Sun, D.-D. Li, J.-R. Li, F. Fang, Q.-R. Du, Y. Qian and H.-L. Zhu, Org. Biomol. Chem., 2013, 11, 7676 CAS.
  8. K. Ramesh, K. Karnakar, G. K. Satish, R. Harsha Vardhan and Y. V. D. Nageswar, Tetrahedron Lett., 2012, 53, 6936 CrossRef CAS PubMed.
  9. C. Yijia, S. Weiguang, L. Min and H. Lihong, Tetrahedron Lett., 2012, 53, 5923 CrossRef PubMed.
  10. D. Q. Shi, L. C. Rong, J. X. Wang, Q. Y. Zhuang, X. S. Wang and H. W. Hu, Tetrahedron Lett., 2003, 44, 3199 CrossRef CAS.
  11. C. Jiuxi, S. Weike, W. Huayue, L. Miaochang and J. Can, Green Chem., 2007, 9, 972 RSC.
  12. V. B. Labade, P. V. Shinde and M. S. Shingare, Tetrahedron Lett., 2013, 54, 5778 CrossRef CAS PubMed.
  13. K. Ramesh, K. Karnakar, G. Satish, B. S. P. Anil Kumar and Y. V. D. Nageswar, Tetrahedron Lett., 2012, 53, 6936 CrossRef CAS PubMed.
  14. D. Rambabu, S. Kiran Kumar, B. Yogi Sreenivas, S. Sandra, A. Kandale, P. Misra, M. V. Basaveswara Rao and M. Pal, Tetrahedron Lett., 2013, 54, 495 CrossRef CAS PubMed.
  15. M. Wang, J. J. Gao, Z.-G. Song and L. Wang, Chem. Heterocycl. Compd., 2011, 7, 47 Search PubMed.
  16. (a) M. Prakash and V. Kesavan, Org. Lett., 2012, 14, 1896 CrossRef CAS PubMed; (b) S. Moni, P. Shashi, C. Kuldeep, S. Deepty, B. Kumar and P. M. S. Chauhan, J. Org. Chem., 2012, 77, 929 CrossRef PubMed; (c) J. Safari and S. Gandomi-Ravandi, J. Mol. Catal. A: Chem., 2013, 371, 135 CrossRef CAS PubMed; (d) J. Safari and S. Gandomi-Ravandi, C. R. Chim., 2013, 12, 1158 CrossRef PubMed; (e) L.-M. Wang, L. Hu, J.-H. Shao, Y. Jianjun and L. Zhang, J. Fluorine Chem., 2008, 129, 1139 CrossRef CAS PubMed; (f) M. Abdollahi-Alibeik and E. Shabani, Chin. Chem. Lett., 2011, 22, 1163 CAS; (g) J. A. W. Andrew, A. C. Maxwell and J. M. J. Williams, Org. Biomol. Chem., 2012, 10, 240 RSC.
  17. (a) J. K. Augustine, Y. Arthoba Naik, A. B. Mandal, N. Chowdappa and V. B. Praveen, J. Org. Chem., 2007, 72, 9854 CrossRef CAS PubMed; (b) J. K. Augustine, Y. Arthoba Naik, S. Poojari and N. Chowdappa, Synth., 2009, 14, 2349 CrossRef PubMed.
  18. (a) S. Chandrappa, K. Vinaya, C. S. Ananda Kumara and K. S. Rangappa, Tetrahedron Lett., 2010, 51, 6493 CrossRef PubMed; (b) S. Chandrappa, K. Vinaya, M. Umashankara and K. S. Rangappa, Tetrahedron Lett., 2011, 52, 5474 CrossRef PubMed; (c) S. Chandrappa, M. Umashankara, K. Vinaya, C. S. Ananda Kumar and K. S. Rangappa, Tetrahedron Lett., 2012, 53, 2632 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4ra02312a

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.