DOI:
10.1039/C4RA01270D
(Communication)
RSC Adv., 2014,
4, 19214-19217
Palladium-catalyzed desulfitative C–P coupling of arylsulfinate metal salts and H-phosphonates†
Received
13th February 2014
, Accepted 14th April 2014
First published on 14th April 2014
Abstract
Catalyzed by palladium(II) chloride, a diverse range of arylsulfinate sodium, potassium, lithium, silver, zinc, and copper salts undergo desulfination/C–P coupling with H-phosphonates, in the presence of silver(I) carbonate as oxidant, to produce useful arylphosphonates under microwave irradiation.
The synthesis of organophosphorus compounds has received significant interest due to their widespread applications in catalysis,1 synthesis,2 medicinal chemistry,3 and materials chemistry.4 Among the manifold reported methods, the transition-metal-catalyzed cross-coupling reaction has been one of the most powerful carbon–phosphorus bond-forming strategies.5 Since the seminal work reported by Tavs and Hirao independently,6 versatile efficient catalytic systems have been developed for the preparation of arylphosphonates. In this context, the aryl substrate scope has been expanded from aryl halides to triflates, mesylates, tosylates, phenols, diazonium salts, boronic acids, and cyano compounds.7
Recently, increasing attention has been attracted to desulfitative coupling via releasing SO2 from sulfinate metal salts, RSO2Na8 or (RSO2)2Zn.9 In contrast to current research in which sulfinates are mainly used to participate in sulfonylation reactions,10 desulfitative coupling reactions have been well demonstrated in desulfitative Heck reactions,8d tandem desulfination/C–H activations,8e,9,11 biaryls synthesis,11c,12 aryl ketones synthesis,8f,g additions,13 and diarylmethanes synthesis.14 However, until now, this type of reaction is limited to the C–C bond formations. As similar with the decarboxylative couplings,15 we envisioned that the resulting aryl metallic intermediate from arylsulfinate metal salt generated in the presence of palladium catalyst might also react with nucleophiles. Considering the great importance of organophosphorus compounds, we wish to develop an efficient desulfitative C–P coupling reaction of arylsulfinate metal salts and H-phosphonates, and have achieved the preliminary results.16 While this manuscript was under review, a similar work has been published focusing on desulfitative C–P coupling of sodium arylsulfinates by Wang group.17 Differing from Wang's work, a microwave-promoted method was applied to our desulfitative C–P coupling, and the scope of arylsulfinate metal salts was also investigated.
Our initial investigations focused on the PdCl2-catalyzed desulfitative phosphonation of sodium p-toluenesulfinate 1a with diethyl phosphite 2a under microwave irradiation. AgI salts are known as efficient oxidants in the Pd-catalyzed oxidative couplings,18 thus we chose silver salts as oxidants to take part in this reaction. As shown in Table 1, we were gratified to find that the use of 20 mol% of PdCl2 and 1 equivalent of Ag2CO3 in toluene at 120 °C provided a 8% yield of the desired product 3a (Table 1, entry 1). Besides the desulfitative homocoupling product 4,11a,12a the reduction/arylation product 5 and reduction/phosphorylation product 619 were also generated because of the reductive properties of phosphites.20 Similar product distribution was obtained when xylene was used as the solvent (entry 2). When the reaction in other common solvents (e.g., EtOAc, THF, DCE, and DMF) was carried out, 3a was produced in moderate yield, and the phosphorothioate ester 6 was effectively controlled (entries 3–6). By employing Myers' solvent system,21 the reaction yield was slightly improved to 68% (entry 7). Due to the competing reduction reactions, we anticipated that the yield might be mended through increasing the amount of the oxidant. To our delight, the augment of the dose of Ag2CO3 to 2 equivalents gave 3a in 96% isolated yield (entry 8). Moving to other silver salts (e.g., Ag2O, AgNO3, Ag2MoO4, and AgOAc) resulted in lower yield (entries 9–12). Running the reaction in DMSO afforded the coupled product in 80% yield (entry 13). 20% yield of 3a was obtained in the absence of Ag2CO3 whether or not the reaction was ran in air atmosphere (entries 14–15), which indicating that the oxygen had no effect on reaction. Absence of PdCl2 showed none of the phosphonation product 3a (entry 16), Therefore, PdCl2 and Ag2CO3 might have a synergetic action in the desulfination. When the reaction was operated under conventional heating condition for 10 h, only 40% of 3a was generated (entry 17).
Table 1 Optimization of the reaction between 1a and 2aa

|
Entry |
Ag salt (equiv.) |
Solvent |
Yield of 3ab (%) |
3a/4/5/6b,c (%) |
Reaction conditions: 1a (0.36 mmol), 2a (0.3 mmol), PdCl2 (20 mol%), Ag salt, solvent (2 mL), MW irradiation at 120 °C for 10 min. GC-MS analysis of crude reaction mixture. Ratio of these four peaks was determined by area normalization method. DMF–DMSO = 19/1 (v/v). Isolated yield in parentheses. Carried out in Ar. In the absence of PdCl2. Carried out under conventional heating condition at 120 °C for 10 h. |
1 |
Ag2CO3 (1) |
Toluene |
8 |
14/0/3/83 |
2 |
Ag2CO3 (1) |
Xylene |
10 |
16/4/6/74 |
3 |
Ag2CO3 (1) |
EtOAc |
63 |
84/4/11/1 |
4 |
Ag2CO3 (1) |
THF |
66 |
80/0/16/4 |
5 |
Ag2CO3 (1) |
DCE |
44 |
57/13/22/8 |
6 |
Ag2CO3 (1) |
DMF |
64 |
77/2/17/4 |
7d |
Ag2CO3 (1) |
DMF–DMSO |
68 |
82/0/10/8 |
8d |
Ag2CO3 (2) |
DMF–DMSO |
99 (96e) |
94/5/1/0 |
9d |
Ag2O (2) |
DMF–DMSO |
81 |
90/8/0/0 |
10d |
AgNO3 (2) |
DMF–DMSO |
33 |
67/31/2/0 |
11d |
Ag2MoO4 (2) |
DMF–DMSO |
43 |
64/3/13/10 |
12d |
AgOAc (2) |
DMF–DMSO |
4 |
11/0/13/76 |
13 |
Ag2CO3 (2) |
DMSO |
80 |
86/10/4/0 |
14d |
— |
DMF–DMSO |
20 |
46/4/34/16 |
15d,f |
— |
DMF–DMSO |
21 |
52/4/37/7 |
16d,g |
Ag2CO3 (2) |
DMF–DMSO |
∼0 |
4/44/41/10 |
17d,h |
Ag2CO3 (2) |
DMF–DMSO |
40 |
66/0/34/0 |
The scope of this desulfitative C–P coupling with respect to the H-phosphonates has been investigated (Table 2). Moderate to good yields could be obtained with various H-phosphonates (3a–3f, 3h). The strong steric hindrance of the H-phosphonates led to inhibition of the reaction (3g).
Table 2 Desulfitative phosphonation of 1a with various H-phosphonatesa,b

|
Reaction conditions: 1a (0.36 mmol), 2 (0.3 mmol), PdCl2 (20 mol%), Ag2CO3 (2 equiv.), DMF–DMSO (v/v = 19/1, 2 mL), MW irradiation at 120 °C for 10 min. Isolated yields. Only biaryl 4 was observed by GC-MS. |
 |
We have also explored functional group tolerance with respect to the substituents on the sodium arylsulfinate (Table 3). Both electron-rich groups and electron-withdrawing groups performed well under our standard reaction conditions. Sodium arylsulfinates with a m-methyl substitution gave a yield of 91% (3j). Versatile groups on the para-position of the arylsulfinates, such as tBu, AcNH, MeO, and halides, gave the products in good yields (3l–3n, 3p and 3q). It was noteworthy that the bromo substituent tolerated well in this reaction (3q). However, much diethyl pyrophosphate was produced when p-fluoro, p-nitro, and p-trifluoromethyl arylsulfinate sodium salts were employed as the substrates. Using DMSO as the solvent could eliminate these disadvantages and gave the products in moderate yields (3o, 3r and 3s). Sodium 2-naphthalenesulfinate provided the corresponding product in 58% yield (3t).
Table 3 Desulfitative arylation of 2a with various arylsulfinate sodium saltsa,b

|
Reaction conditions: 1a (0.36 mmol), 2 (0.3 mmol), PdCl2 (20 mol%), Ag2CO3 (2 equiv.), DMF–DMSO (v/v = 19/1, 2 mL), MW irradiation at 120 °C for 10 min. Isolated yields. DMSO (2 mL). |
 |
This catalytic system was also effective for other metal salts of arylsulfinate, including Li, K, Ag, Zn, and Cu. As depicted in Table 4, the reaction of these arylsulfinate metal salts with diethyl phosphite gave the coupled product in moderate to excellent yields (entries 1–5). Among these metal salts, zinc arylsulfinate turned out to be the most appropriate substrate for the catalytic system (entry 4).
Table 4 Desulfitative arylation of 2a with arylsulfinate metal saltsa
In summary, we have developed a new type of desulfitative coupling for the preparation of arylphosphonates and have demonstrated its functional group tolerance and substrate scope. The versatile arylsulfinate metal salts (M = Na, Li, K, Ag, Zn, and Cu) used pave the way for the application of desulfitative C–P couplings. Full details of the mechanism and further scope of these transformations will be forthcoming.
Notes and references
-
(a) T. Hayashi, Acc. Chem. Res., 2000, 33, 354 CrossRef CAS PubMed;
(b) W. Tang and X. Zhang, Chem. Rev., 2003, 103, 3029 CrossRef CAS PubMed;
(c) A. Zamfir, S. Schenker, M. Freund and S. B. Tsogoeva, Org. Biomol. Chem., 2010, 8, 5262 CAS;
(d) J. Yu, F. Shi and L.-Z. Gong, Acc. Chem. Res., 2011, 44, 1156 CrossRef CAS PubMed.
-
(a) J. Boutagy and R. Thomas, Chem. Rev., 1974, 74, 87 CrossRef CAS;
(b) B. E. Maryanoff and A. B. Reitz, Chem. Rev., 1989, 89, 863 CrossRef CAS;
(c) P. J. Murphy and J. Brennan, Chem. Soc. Rev., 1988, 17, 1 RSC.
-
(a) R. Engel, Chem. Rev., 1977, 77, 349 CrossRef CAS;
(b) D. T. Keough, P. Špaček, D. Hocková, T. Tichý, S. Vrbková, L. Slavětínská, Z. Janeba, L. Naesens, M. D. Edstein, M. Chavchich, T.-H. Wang, J. de Jersey and L. W. Guddat, J. Med. Chem., 2013, 56, 2513 CrossRef CAS PubMed;
(c) M. R. Harnden, A. Parkin, M. J. Parratt and R. M. Perkins, J. Med. Chem., 1993, 36, 1343 CrossRef CAS.
-
(a) J. D. Goff, P. P. Huffstetler, W. C. Miles, N. Pothayee, C. M. Reinholz, S. Ball, R. M. Davis and J. S. Riffle, Chem. Mater., 2009, 21, 4784 CrossRef CAS;
(b) K. Troev, A. Naruoka, H. Terada, A. Kikuchi and K. Makino, Macromolecules, 2012, 45, 5698 CrossRef CAS;
(c) B. Chen, J. Ding, L. Wang, X. Jing and F. Wang, J. Mater. Chem., 2012, 22, 23680 RSC.
-
(a) I. P. Beletskaya and M. A. Kazankova, Russ. J. Org. Chem., 2002, 38, 1391 CrossRef CAS;
(b) C. Baillie and J. Xiao, Curr. Org. Chem., 2003, 7, 477 CrossRef CAS;
(c) A. L. Schwan, Chem. Soc. Rev., 2004, 33, 218 RSC;
(d) D. S. Glueck, Top. Organomet. Chem., 2010, 31, 65 CrossRef CAS;
(e) F. M. J. Tappe, V. T. Trepohl and M. Oestreich, Synthesis, 2010, 42, 3037 Search PubMed;
(f) C. S. Demmer, N. Krogsgaard-Larsen and L. Bunch, Chem. Rev., 2011, 111, 7981 CrossRef CAS PubMed.
-
(a) P. Tavs, Chem. Ber., 1970, 103, 2428 CrossRef CAS;
(b) T. Hirao, T. Masunaga, Y. Ohshiro and T. Agawa, Tetrahedron Lett., 1980, 21, 3595 CrossRef CAS;
(c) T. Hirao, T. Masunaga, Y. Ohshiro and T. Agawa, Synthesis, 1981, 56 CrossRef CAS.
-
(a) K. S. Petrakis and T. L. Nagabhushan, J. Am. Chem. Soc., 1987, 109, 2831 CrossRef CAS;
(b) C. Shen, G. Yang and W. Zhang, Org. Biomol. Chem., 2012, 10, 3500 RSC;
(c) R. Berrino, S. Cacchi, G. Fabrizi, A. Goggiamani and P. Stabile, Org. Biomol. Chem., 2010, 8, 4518 RSC;
(d) Y.-L. Zhao, G.-J. Wu, Y. Li, L.-X. Gao and F.-S. Han, Chem.–Eur. J., 2012, 18, 9622 CrossRef CAS PubMed;
(e) R. Zhuang, J. Xu, Z. Cai, G. Tang, M. Fang and Y. Zhao, Org. Lett., 2011, 13, 2110 CrossRef CAS PubMed;
(f) J. Hu, N. Zhao, B. Yang, G. Wang, L.-N. Guo, Y.-M. Liang and S.-D. Yang, Chem.–Eur. J., 2011, 17, 5516 CrossRef CAS PubMed.
-
(a) B. R. Langlois, E. Laurent and N. Roidot, Tetrahedron Lett., 1991, 32, 7525 CrossRef CAS;
(b) A. Deb, S. Manna, A. Modak, T. Patra, S. Maity and D. Maiti, Angew. Chem., Int. Ed., 2013, 52, 9747 CrossRef CAS PubMed;
(c) Z. Li, Z. Cui and Z.-Q. Liu, Org. Lett., 2013, 15, 406 CrossRef CAS PubMed;
(d) X. Zhou, J. Luo, J. Liu, S. Peng and G.-J. Deng, Org. Lett., 2011, 13, 1432 CrossRef CAS PubMed;
(e) R. Chen, S. Liu, X. Liu, L. Yang and G.-J. Deng, Org. Biomol. Chem., 2011, 9, 7675 RSC;
(f) H. Rao, L. Yang, Q. Shuai and C.-J. Li, Adv. Synth. Catal., 2011, 353, 1701 CrossRef CAS;
(g) M. Behrends, J. Sävmarker, P. J. R. Sjöberg and M. Larhed, ACS Catalysis, 2011, 1, 1455 CrossRef CAS;
(h) J. Liu, X. Zhou, H. Rao, F. Xiao, C.-J. Li and G.-J. Deng, Chem.–Eur. J., 2011, 17, 7996 CrossRef CAS PubMed.
-
(a) Y. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D. Baxter, D. D. Dixon, M. R. Collins, D. G. Blackmond and P. S. Baran, J. Am. Chem. Soc., 2012, 134, 1494 CrossRef CAS PubMed;
(b) Y. Fujiwara, J. A. Dixon, F. O'Hara, E. D. Funder, D. D. Dixon, R. A. Rodriguez, R. D. Baxter, B. Herle, N. Sach, M. R. Collins, Y. Ishihara and P. S. Baran, Nature, 2012, 492, 95 CrossRef CAS PubMed;
(c) Y. Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G. Blackmond and P. S. Baran, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 14411 CrossRef CAS PubMed;
(d) Q. Zhou, J. Gui, C.-M. Pan, E. Albone, X. Cheng, E. M. Suh, L. Grasso, Y. Ishihara and P. S. Baran, J. Am. Chem. Soc., 2013, 135, 12994 CrossRef CAS PubMed.
-
(a) A. Varela-Álvarez, D. Marković, P. Vogel and J. A. Sordo, J. Am. Chem. Soc., 2009, 131, 9547 CrossRef PubMed;
(b) K. M. Maloney, J. T. Kuethe and K. Linn, Org. Lett., 2010, 13, 102 CrossRef PubMed;
(c) Y. Li, K. Cheng, X. Lu and J. Sun, Adv. Synth. Catal., 2010, 352, 1876 CrossRef CAS;
(d) S. C. Cullen, S. Shekhar and N. K. Nere, J. Org. Chem., 2013, 78, 12194 CrossRef CAS PubMed;
(e) F. Xiao, H. Chen, H. Xie, S. Chen, L. Yang and G.-J. Deng, Org. Lett., 2014, 16, 50 CrossRef CAS PubMed.
-
(a) B. Liu, Q. Guo, Y. Cheng, J. Lan and J. You, Chem.–Eur. J., 2011, 17, 13415 CrossRef CAS PubMed;
(b) M. Wang, D. Li, W. Zhou and L. Wang, Tetrahedron, 2012, 68, 1926 CrossRef CAS PubMed;
(c) M. Wu, J. Luo, F. Xiao, S. Zhang, G.-J. Deng and H.-A. Luo, Adv. Synth. Catal., 2012, 354, 335 CrossRef CAS.
-
(a) B. Rao, W. Zhang, L. Hu and M. Luo, Green Chem., 2012, 14, 3436 RSC;
(b) S. Sévigny and P. Forgione, Chem.–Eur. J., 2013, 19, 2256 CrossRef PubMed.
-
(a) W. Chen, X. Zhou, F. Xiao, J. Luo and G.-J. Deng, Tetrahedron Lett., 2012, 53, 4347 CrossRef CAS PubMed;
(b) S. Liu, Y. Bai, X. Cao, F. Xiao and G.-J. Deng, Chem. Commun., 2013, 49, 7501 RSC.
- F. Zhao, Q. Tan, F. Xiao, S. Zhang and G.-J. Deng, Org. Lett., 2013, 15, 1520 CrossRef CAS PubMed.
-
(a) L. J. Gooßen, N. Rodríguez and K. Gooßen, Angew. Chem., Int. Ed., 2008, 47, 3100 CrossRef PubMed;
(b) L. J. Gooßen, K. Gooßen, N. Rodríguez, M. Blanchot, C. Linder and B. Zimmermann, Pure Appl. Chem., 2008, 80, 1725 CrossRef;
(c) L. J. Gooßen, F. Collet and K. Gooßen, Isr. J. Chem., 2010, 50, 617 CrossRef;
(d) N. Rodriguez and L. J. Gooßen, Chem. Soc. Rev., 2011, 40, 5030 RSC;
(e) R. Shang and L. Liu, Sci. China: Chem., 2011, 54, 1670 CrossRef CAS PubMed;
(f) J. Cornella and I. Larrosa, Synthesis, 2012, 44, 653 CrossRef CAS PubMed;
(g) W. I. Dzik, P. P. Lange and L. J. Gooßen, Chem. Sci., 2012, 3, 2671 RSC.
- J. Li, H. Wang and J. Xiao, Palladium(II)-Catalyzed Desulfitative P-C Cross-Coupling of Sodium Sulfinates with Dialkyl Phosphites. Book of Abstracts, The 9th National Conference on Phosphorus Chemistry and Chemical Engineering, Guiyang, P. R. China, 2013, p. 46 Search PubMed.
- T. Miao and L. Wang, Adv. Synth. Catal., 2014, 356, 967 CrossRef CAS.
-
(a) J. Cornella, P. Lu and I. Larrosa, Org. Lett., 2009, 11, 5506 CrossRef CAS PubMed;
(b) K. Masui, H. Ikegami and A. Mori, J. Am. Chem. Soc., 2004, 126, 5074 CrossRef CAS PubMed;
(c) O. Daugulis, H.-Q. Do and D. Shabashov, Acc. Chem. Res., 2009, 42, 1074 CrossRef CAS PubMed;
(d) C. Wang, S. Rakshit and F. Glorius, J. Am. Chem. Soc., 2010, 132, 14006 CrossRef CAS PubMed;
(e) C. Wang, I. Piel and F. Glorius, J. Am. Chem. Soc., 2009, 131, 4194 CrossRef CAS PubMed;
(f) N. Lebrasseur and I. Larrosa, J. Am. Chem. Soc., 2008, 130, 2926 CrossRef CAS PubMed.
- For the formation of these compounds and other side products, please see the ESI† for details.
-
(a) R. A. W. Johnstone, A. H. Wilby and I. D. Entwistle, Chem. Rev., 1985, 85, 129 CrossRef CAS;
(b) P. Anbarasan, H. Neumann and M. Beller, Chem. Commun., 2011, 47, 3233 RSC;
(c) Q. Wu, D. Zhao, X. Qin, J. Lan and J. You, Chem. Commun., 2011, 47, 9188 RSC;
(d) J.-L. Montchamp and Y. R. Dumond, J. Am. Chem. Soc., 2000, 123, 510 CrossRef;
(e) S. Deprèle and J.-L. Montchamp, J. Am. Chem. Soc., 2002, 124, 9386 CrossRef PubMed;
(f) S. K. Boyer, J. Bach, J. McKenna and E. Jagdmann, J. Org. Chem., 1985, 50, 3408 CrossRef CAS.
-
(a) A. G. Myers, D. Tanaka and M. R. Mannion, J. Am. Chem. Soc., 2002, 124, 11250 CrossRef CAS PubMed;
(b) D. Tanaka and A. G. Myers, Org. Lett., 2004, 6, 433 CrossRef CAS PubMed;
(c) D. Tanaka, S. P. Romeril and A. G. Myers, J. Am. Chem. Soc., 2005, 127, 10323 CrossRef CAS PubMed.
Footnote |
† Electronic supplementary information (ESI) available: Experimental procedures and characterization data of all compounds and copies of NMR spectra. See DOI: 10.1039/c4ra01270d |
|
This journal is © The Royal Society of Chemistry 2014 |
Click here to see how this site uses Cookies. View our privacy policy here.