L-proline catalyzed multicomponent reactions: facile access to 2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione derivatives

Shaik Karamthullaa, Suman Pala, Tasneem Parvinb and Lokman H. Choudhury*a
aDepartment of Chemistry, Indian Institute of Technology Patna, Patna-800013, India. E-mail: lokman@iitp.ac.in; Fax: +91 612 227 7383; Tel: +91 612 2552038
bDepartment of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna-800 005, India

Received 30th January 2014 , Accepted 14th March 2014

First published on 14th March 2014


Abstract

A series of 2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione derivatives has been synthesized from the three component reactions of 2-hydroxy-1,4-naphthoquinone, aldehydes, and aminopyrazoles in the presence of a catalytic amount of L-proline. This domino reaction proceeds smoothly in good to excellent yields and offers several advantages including no column chromatography, a simple reaction procedure, metal-free reaction conditions and being applicable to a broad range of aldehydes.


Introduction

Synthesis of diverse polycyclic heterocycles from readily available starting materials in a cost and time effective manner has remained useful in organic synthesis owing to their widespread applications in pharmaceuticals, agrochemicals and in materials sciences.1 Multicomponent reactions (MCRs), where three or more reactants are mixed in a single pot to generate a product incorporating most of the atoms of the starting materials,2 are considered as one of the best tools for the easy access to diverse heterocycles under Pot Atom and Step Economic (PASE)3 conditions. Organocatalysis in multicomponent reactions makes the process greener as it works under the metal-free conditions and avoids the toxicity associated with metals. Considering this fact, in recent times, organo catalyzed MCRs have become very popular in organic synthesis.4

Recently we have, reported the virtue of imidazole as organocatalyst in MCRs for the synthesis of diverse carbo and heterocycles.5 We also have demonstrated a three component reaction of 4-hydroxycoumarin, aldehyde and aminopyrazole for the construction of a series of fused dihydroypyridines.6 MCRs using amino pyrazoles have become very popular strategy for the construction of functionalized polycyclic heterocycles.7 Similar to aminopyrazoles, 2-hydroxy-1,4-naphthoquinone is also a widely used starting material in MCRs.8 Considering their usefulness and potent bioactivities we wanted to explore further these two substrates in our MCRs. In continuation of our ongoing research on MCRs,9 we wished to develop a simple and useful three component reaction of aminopyrazole, 2-hydroxy-1,4-naphthoquinone and aldehyde using readily available organocatalyst for the synthesis of polycyclic N-heterocycles as shown in Scheme 1.


image file: c4ra00876f-s1.tif
Scheme 1 Synthesis of polycyclic N-heterocycles using three component reactions.

L-proline is one of the cheap, readily available and most explored organocatalyst both in two and multicomponent reactions.10 Due to the presence of a basic secondary amine and an acidic carboxylic group, proline can catalyze a wide range of reactions. Thus, we envisioned that L-proline will also act as an efficient organocatalyst in our proposed MCRs.

Pyrazolo[3,4-b]quinoline derivatives (A) posses a wide range of medicinal properties such as antiviral,11 antibacterial,12 antimicrobial,13 oncogenic Ras inhibiting,14 and cyclooxygenase inhibiting activities.15 In addition, these compounds exhibit luminescence16 and fluorescence17 properties. Considering their wide spread applications, development of new and efficient methods for the access of these classes of compounds have lot of significance. Recently Li et al.18 have reported a microwave assisted methodology for the synthesis of benzo[h]pyrazolo[3,4-b]quinolines in acetic acid. They have successfully converted the resulting benzoquinoline products into quinoxaline-fused benzo[h]isoxazolo[5,4-b]quinolines by reacting with benzene-1,2-diamine under microwave irradiation. On the other hand, a few methods employing various catalysts such as molecular iodine,19 diammonium hydrogen phosphate20 and InCl321 are also known in the literature for synthesis of 4-aryl-3-methyl-1-phenyl-1H-benzo[h]pyrazolo[3,4-b]quinoline-5,10-diones (a 1,4-diketone derivative) by the three component condensation of 3-methyl-1-phenyl-1H-pyrazol-5-amine, aldehydes and 2-hydroxynaphthalene-1,4-dione. Nageswar et al.22 have recently synthesized pyrazolo[3,4-b]quinoline derivatives by one pot three component reaction of aldehyde, aminopyrazole, and 1,3-cyclohexanedione using polyethylene glycol (PEG)-400 as reaction medium. Interestingly, all the above mentioned reported protocols describe the synthesis of Pyrazolo[3,4-b]quinoline derivatives with a fused pyridine ring (A), and our objective is to access 2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione derivatives (B) with a fused dihydropyridine ring from the three component reaction of 2-hydroxy-1,4-naphthoquinone, aldehyde, and aminopyrazole using metal-free environmentally benign reaction conditions (Fig. 1).


image file: c4ra00876f-f1.tif
Fig. 1 Structural correlation of A and B.

Result and discussion

Initially the reaction of 4-chlorobenzaldehyde (1.0 mmol), 2-hydroxy-1,4-naphthoquinone (1.0 mmol) and 3-amino-5-methylpyrazole (1.0 mmol) was studied without using any catalyst in ethanol. At room temperature, the above combination did not provide the expected three component product even after 24 h stirring. Interestingly, when the same set of reactants in ethanol was refluxed in absence of any catalyst for 9 hours, the desired three component product 1c was obtained in 15% only (Table 1, entry 2). The compound 1c was fully characterized by IR, 1H, 13C NMR and elemental analysis. Encouraged by this result, we shifted our attention towards optimization of the reaction conditions using various catalysts for the same model reaction in ethanol as solvent under reflux conditions. Basic organocatalysts such as DBN, Et3N, and DABCO were screened under the similar reaction conditions to find the optimum yield and reaction time. The results are summarized in Table 1 (entries 3–5). Interestingly, L-proline (20 mol%) showed the best result among all the screened catalysts. Next, to find the best solvent for this transformation the same reaction was also screened in various solvents such as EtOH, CH3CN, DMF, CH2Cl2 and THF (Table 1, entries 6 and 9–12) in the presence of 20 mol% L-proline. Among all these solvents, EtOH was found to be the best solvent for this transformation.
Table 1 Optimisation of reaction conditions

image file: c4ra00876f-u1.tif

Entry Catalyst Mole% Solvent Time (h) Yielda
a Isolated yield.b Reaction performed at room temperature.
1 EtOH 24 NRb
2 EtOH 9 15
3 DBN 20 EtOH 12 28
4 DABCO 20 EtOH 9 35
5 Et3N 20 EtOH 9 80
6 L-Proline 20 EtOH 9 88
7 L-Proline 10 EtOH 9 75
8 L-Proline 30 EtOH 9 89
9 L-Proline 20 CH3CN 9 68
10 L-Proline 20 DMF 9 64
11 L-Proline 20 CH2Cl2 9 Trace
12 L-Proline 20 THF 9 60


To check the generality and versatility of this method, a study on the substrate scope was carried out under the optimized reaction conditions and the results are summarized in Table 2. It can be found from the results that a wide range of aldehydes are suitable for this multicomponent reaction. Aromatic aldehydes tethered with both electron-donating and electron-withdrawing substituents like F, Cl, Br, Me, NO2, OMe, OH, CH(Me)2 afforded the desired products (1b–1n) in very good yields with both 3-amino-5-methylpyrazole and 3-aminopyrazole. To extend the utility of this method, aliphatic aldehyde such as butanal and heteroaromatic aldehyde i.e. furfuraldehyde were also tested and the corresponding products (1o and 1p) were obtained in good yields (Table 2).

Table 2 Synthesis of 2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-diones

image file: c4ra00876f-u2.tif

image file: c4ra00876f-u3.tif


The plausible mechanism of this reaction is shown in Scheme 2. We believe the mechanism goes via domino Aldol reaction–Michael addition–N-cyclization–tautomerism sequence to give the final product 1 regioselectively. Interestingly, we have not isolated the ortho isomer as mentioned by Li et al.18 It is evident from the fact that no reaction was observed when the product obtained from the above reaction was treated with o-phenylenediamine. This presumably can be an indirect evidence for the regioselectivity observed in this reaction.


image file: c4ra00876f-s2.tif
Scheme 2 Proposed mechanism for the synthesis of 2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-diones.

Conclusion

We have developed a facile and efficient one-pot, three component reaction for the synthesis of functionalized polycyclic N-heterocycles using readily available L-proline as organo catalyst. This domino reaction proceeded smoothly in good to excellent yields and offered several advantages including short reaction time, simple experimental procedure, no column chromatography, and no toxic by-product. Due to the presence of NH and C[double bond, length as m-dash]O functionality in these molecules they can serve as organic ligands for the formation of metal complexes as well as further functionalization of these molecules is feasible, and work in this direction is ongoing in our laboratory and will be reported in due course.

Experimental

General information

All reagents and chemicals required for the reactions were procured from commercial sources and used without further purification. IR spectra were recorded in Shimadzu FTIR spectrophotometer. 1H NMR spectra and 13C NMR spectra were recorded on 500, 400 and 300 MHz spectrometer in DMSO-d6 using TMS as internal reference. Elemental analyses were carried out in a Perkin Elmer 2400 automatic CHN analyzer or Elementer Vario EL III. All new compounds were characterized by recording melting point without correction, 1H NMR, 13C NMR and elemental analysis.
Typical experimental procedure for the synthesis of 1c. To a stirred mixture of 4-chlorobenzaldehyde (1 mmol) and 2-hydroxy-1,4-naphthoquinone (1 mmol) in ethanol (5 ml), was added L-proline (0.2 mmol) and the reaction mixture was stirred under reflux conditions for 30 minutes. Then 3-amino-5-methylpyrazole (1 mmol) was added to it. The resulting mixture was stirred until the reaction was completed as indicated by TLC. The resulting solid was collected by filtration and washed with ethanol to afford the product. The resulting product was pure enough for characterization.
3-Methyl-4-phenyl-2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1a). Yield: 71%. Brown solid. m.p. 292–294° C. IR (KBr): 3421, 3411, 3071, 2909, 1667, 1607, 1550, 1510, 1429, 1384, 1319, 1273, 1207, 1154, 1051, 957, 742 cm−1. 1H NMR (300 MHz, DMSO-d6): δ = 12.10 (s, 1H, NH), 10.20 (s, 1H, NH), 8.05–7.70 (m, 5H, ArH), 7.50–7.30 (m, 4H, ArH), 5.40 (s, 1H, CH), 2.01 (s, 3H, CH3) ppm. 13C NMR (75 MHz, DMSO-d6): δ = 181.7, 181.3, 147.1, 146.9, 142.0, 137.0, 135.6, 133.5, 131.2, 130.3, 128.9, 126.6, 126.3, 114.7, 103.5, 80.1, 36.4, 10.3 ppm. Anal. calcd for C21H15N3O2 (341.36): C, 73.89; H, 4.43; N, 12.31; found: C, 73.93. H, 4.45; N, 12.38%.
4-(4-Fluorophenyl)-3-methyl-1H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1b). Yield: 75%. Dark purple solid. m.p. 299–301 °C. IR (KBr): 3435, 3419, 3024, 2950, 2867, 1670, 1611, 1551, 1344, 1224, 1156, 957, 793, 607 cm−1. 1H NMR (400 MHz, DMSO-d6): 12.10 (s, 1H, NH), 10.20 (s, 1H, NH), 8.0 (d, J = 7.6 Hz, 1H, ArH), 7.84 (d, J = 7.6 Hz, 1H, ArH), 7.83–7.70 (m, 2H, ArH), 7.29–7.25 (m, 2H, ArH), 7.0 (t, J = 7.6 Hz, 2H, ArH), 5.36 (s, 1H, CH), 1.94 (s, 3H, CH3) ppm. 13C NMR (75 MHz, DMSO-d6): δ = 180.8, 180.5, 145.2, 143.5, 141.0, 135.5, 134.7, 132.6, 130.3, 129.3, 129.2, 125.7, 125.4, 114.9, 114.6, 102.9, 35.2, 9.4 ppm. Anal. calcd for C21H14FN3O2 (359.35): C, 70.19; H, 3.93; N, 11.69. Found: C, 70.14; H, 3.96; N, 11.75%.
4-(4-Chlorophenyl)-3-methyl-2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1c). Yield: 88%. Reddish brown solid. m.p. 298–300 °C. IR (KBr): 3455, 3420, 3024, 1670, 1609, 1561, 1352, 1250, 1170, 957, 785 cm−1. 1H NMR (300 MHz, DMSO-d6): δ = 12.10 (s, 1H, NH), 10.25 (s, 1H, NH), 8.0 (d, J = 7.6 Hz, 1H, ArH), 7.88–7.71 (m, 3H, ArH), 7.40 (d, J = 9.0 Hz, 2H, ArH), 7.20 (d, J = 7.5 Hz, 2H, ArH), 5.45 (s, 1H, CH), 1.93 (s, 3H, CH3) ppm. 13C NMR (125 MHz, DMSO-d6): δ = 181.2, 180.9, 146.9, 145.7, 141.5, 136.0, 135.2, 133.0, 132.9, 131.4, 130.8, 130.2, 126.2, 125.9, 119.3, 114.1, 103.0, 36.1, 9.9 ppm. Anal. calcd for C21H14ClN3O2 (375.81): C, 67.12; H, 3.75; N, 11.18. Found: C, 67.16; H, 3.72; N, 11.26%.
4-(4-Bromophenyl)-3-methyl-2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1d). Yield: 75%. Purple solid. m.p. 305–307 °C. IR (KBr): 3302, 3290, 3059, 2972, 1662, 1613, 1556, 1516, 1432, 1384, 1344, 1273, 1204, 1147, 1085, 1051, 904, 760 cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 12.10 (s, 1H, NH), 10.23 (s, 1H, NH), 8.02 (d, J = 7.2 Hz, 1H, ArH), 7.99–7.73 (m, 3H, ArH), 7.40 (d, J = 8.4 Hz, 2H, ArH), 7.21 (d, J = 8.0 Hz, 2H, ArH), 5.34 (s, 1H, CH), 1.96 (s, 3H, CH3) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 181.7, 181.3, 147.4, 145.5, 142.0, 135.6, 133.5, 133.4, 131.9, 131.2, 130.7, 126.6, 126.3, 119.7, 114.5, 103.4, 36.5, 10.3 ppm. Anal. calcd for C21H14BrN3O2 (420.26): C, 60.02; H, 3.36; N, 10.00. Found: C, 60.08; H, 3.32; N, 10.09%.
3-Methyl-4-p-tolyl-2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1e). Yield: 81%. Purple solid. m.p. 289–291 °C. IR (KBr): 3450, 3432, 3012, 1665, 1610, 1512, 1355, 1260, 1180, 958 cm−1. 1H NMR (300 MHz, DMSO-d6): δ = 12.03 (s, 1H, NH), 10.12 (s, 1H, NH), 8.10–7.70 (m, 4H, ArH), 7.11 (d, J = 8.1 Hz, 2H, ArH), 7.00 (d, J = 7.8 Hz, 2H, ArH), 5.35 (s, 1H, CH), 2.25 (s, 3H, CH3), 1.93 (s, 3H, CH3) ppm. 13C NMR (125 MHz, DMSO-d6): δ = 181.2, 181.0, 144.8, 141.3, 136.0, 135.2, 135.1, 133.0, 132.9, 130.7, 129.1, 127.8, 126.1, 125.9, 114.9, 103.6, 35.9, 21.0, 9.9 ppm. Anal. calcd for C22H17N3O2 (355.39): C, 74.35; H, 4.82; N, 11.82. Found: C, 74.42; H, 4.79; N, 11.90%.
3-Methyl-4-(4-nitrophenyl)-2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1f). Yield: 59%. Dark purple solid. m.p. 277–279 °C. IR (KBr): 3215, 3210, 3025, 2965, 1678, 1611, 1592, 1518, 1345, 1249, 988 cm−1. 1H NMR (300 MHz, DMSO-d6): δ 12.10 (s, 1H, NH), 10.30 (s, 1H, NH), 8.40 (d, J = 8.4 Hz, 2H, ArH), 8.11 (d, J = 9.0 Hz, 1H, ArH), 8.02 (d, J = 9.0 Hz, 1H, ArH), 7.85–7.66 (m, 2H, ArH), 7.56 (d, J = 9.0 Hz, 2H, ArH), 5.50 (s, 1H, CH), 1.98 (s, 3H, CH3) ppm. 13C NMR (75 MHz, DMSO-d6): δ = 180.7, 180.3, 154.4, 145.6, 141.5, 134.8, 132.4, 132.4, 130.3, 128.8, 128.3, 125.8, 125.4, 123.5, 112.9, 101.8, 36.3, 9.4 ppm. Anal. calcd for C21H14N4O4 (386.36): C, 65.28; H, 3.65; N, 14.50. Found: C, 65.34; H, 3.62; N, 14.59%.
4-(4-Methoxyphenyl)-3-methyl-2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1g). Yield: 86%. Purple solid. m.p. 269–271 °C. IR (KBr): 3435, 3419, 3024, 2956, 1670, 1609, 1570, 1528, 1326, 1214, 957, 785 cm−1. 1H NMR (300 MHz, DMSO-d6): δ = 12.10 (s, 1H, NH), 10.25 (s, 1H, NH), 8.0 (d, J = 7.2 Hz, 1H, ArH), 7.90–7.70 (m, 3H, ArH), 7.14 (d, J = 8.4 Hz, 2H, ArH), 6.76 (d, J = 8.4 Hz, 2H, ArH), 5.25 (s, 1H, CH), 3.75 (s, 3H, OCH3), 1.95 (s, 3H, CH3) ppm. 13C NMR (75 MHz, DMSO-d6): δ = 180.8, 180.5, 157.3, 145.3, 140.6, 139.4, 135.2, 134.6, 132.5, 132.4, 130.2, 128.4, 125.6, 125.3, 114.6, 113.4, 103.2, 54.8, 34.9, 9.3 ppm. Anal. calcd for C22H17N3O3 (371.39): C, 71.15; H, 4.61; N, 11.31. Found: C, 71.10; H, 4.63; N, 11.40%.
4-(4-Chlorophenyl)-2H-benzo[g]pyrazolo[3,4-b]quinoline 5,10(4H,11H)-dione (1h). Yield: 72%. Reddish brown solid. m.p. 282–284 °C. IR (KBr): 3246, 3202, 3078, 2909, 1672, 1609, 1553, 1510, 1432, 1384, 1326, 1238, 1207, 1172, 1113, 1038, 960, 760 cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 12.20 (s, 1H, NH), 10.20 (s, 1H, NH), 8.05 (d, J = 7.2 Hz, 1H, ArH), 7.89–7.71 (m, 3H, ArH), 7.48 (s, 1H, ArH), 7.20 (d, J = 8.8 Hz, 2H, ArH), 7.12 (d, J = 8.4 Hz, 2H, ArH), 5.50 (s, 1H, CH) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 181.8, 181.2, 147.8, 142.4, 135.6, 133.5, 133.4, 131.3, 131.2, 129.8, 129.0, 126.7, 126.3, 113.9, 106.2, 80.7, 36.4 ppm. Anal. calcd for C20H12ClN3O2 (361.78): C, 66.40; H, 3.34; N, 11.61. Found: C, 66.34; H, 3.37; N, 11.71%.
4-(4-Hydroxyphenyl)-3-methyl-2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1i). Yield: 85%. Blue solid. m.p. 276–278 °C. IR (KBr): 3440, 3430, 3031, 2956, 1668, 1608, 1509, 1464, 1371, 1287, 955 cm−1. 1H NMR (300 MHz, DMSO-d6): δ = 12.10 (s, 1H, NH), 10.10 (s, 1H, NH), 9.12 (bs, 1H, OH), 8.0 (d, J = 7.5 Hz, 1H, ArH), 7.90–7.70 (m, 3H, ArH), 7.01 (d, J = 8.4 Hz, 2H, ArH), 6.58 (d, J = 8.4 Hz, 2H, ArH), 5.35 (s, 1H, CH), 1.93 (s, 3H, CH3) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 180.6, 179.9, 157.7, 153.1, 151.7, 137.6, 135.9, 135.1, 132.9, 132.1, 129.3, 128.8, 128.4, 127.5, 126.7, 120.3, 115.2, 35.9, 14.8 ppm. Anal. calcd for C21H15N3O3 (357.36): C, 70.58; H, 4.23; N, 11.76. Found: C, 70.64; H, 4.20; N, 11.85%.
3-Methyl-4-(3-nitrophenyl)-1H-benzo [g] pyrazolo [3,4-b]quinoline-5,10(4H,11H)-dione (1j). Yield: 52%. Reddish brown solid. m.p. 265–267 °C. IR (KBr): 3436, 3420, 3100, 3031, 1663, 1609, 1510, 1467, 1345, 1272, 1149, 1101, 956, 849, 790, 601 cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 12.14 (bs, 1H, NH), 10.31 (bs, 1H, NH) 8.10 (s, 1H, ArH), 8.0 (d, J = 7.6 Hz, 1H, ArH), 7.97 (d, J = 8.0 Hz, 1H, ArH), 7.83 (d, J = 7.6 Hz, 1H, ArH) 7.79–7.72 (m, 3H, ArH), 7.51 (t, J = 7.6 Hz, 1H, ArH), 5.55 (s, 1H, CH), 1.93 (s, 3H, CH3) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 180.7, 180.3, 149.1, 147.6, 141.4, 135.9, 134.7, 134.4, 132.5, 132.4, 130.3, 129.6, 125.7, 125.4, 121.9, 120.9, 112.9, 102.1, 35.9, 9.4 ppm. Anal. calcd for C21H14N4O4 (386.36): C, 65.28; H, 3.65; N, 14.50. Found: C, 65.22; H, 3.68; N, 14.60%.
4-(4-Isopropylphenyl)-2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1k). Yield: 88%. Dark brown solid. m.p. 266–268 °C. IR (KBr): 3420, 3405, 3090, 2953, 1662, 1609, 1563, 1525, 1507, 1410, 1351, 1204, 1101, 1060, 954, 829, 760 cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 12.20 (bs, 1H, NH), 10.20 (bs, 1H, NH), 8.0 (d, J = 6.8 Hz, 1H, ArH), 7.85 (d, J = 6.4 Hz, 1H, ArH), 7.78–7.70 (m, 1H, ArH), 7.41 (s, 1H, ArH), 7.18–7.01 (m, 5H, ArH), 5.20 (s, 1H, CH), 2.76–2.74 (m, 1H, CH), 1.10 (d, J = 6.8 Hz, 6H, CH3) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 181.8, 181.3, 146.6, 146.3, 142.2, 135.6, 133.5, 133.4, 131.2, 127.8, 127.3, 127.0, 126.6, 126.4, 114.7, 106.8, 36.3, 33.9, 24.8 ppm. Anal. calcd for C23H19N3O2 (369.42): C, 74.78; H, 5.18; N, 11.37. Found: C, 74.72; H, 5.20; N, 11.46%.
4-(4-Isopropylphenyl)-3-methyl-2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1l). Yield: 86%. White solid. m.p. 291–293 °C. IR (KBr): 3447, 3421, 3051, 2958, 1665, 1534, 1342, 1267, 1151, 959, 788, 724, 613 cm−1. 1H NMR (300 MHz, DMSO-d6): δ = 12.04 (bs, 1H, NH), 10.13 (bs, 1H, NH), 8.0 (d, J = 6.9 Hz, 1H, ArH), 7.85 (d, J = 7.2 Hz, 1H, ArH), 7.80–7.70 (m, 2H, ArH), 7.15 (d, J = 7.8 Hz, 2H, ArH), 7.07 (d, J = 8.1 Hz, 2H, ArH) 5.31 (s, 1H, CH), 2.70 (m, 1H, CH), 1.98 (s, 3H, CH3), 1.12 (d, J = 6.9 Hz, 6H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 180.7, 180.5, 145.6, 145.3, 144.6, 140.9, 135.2, 134.6, 132.5, 130.3, 127.2, 125.9, 125.6, 125.4, 114.4, 103.2, 35.3, 32.9, 23.8, 9.4 ppm. Anal. calcd for C24H21N3O2 (383.44): C, 75.18; H, 5.52; N, 10.96. Found: C, 75.12; H, 5.55; N, 10.06%.
4-(2,4-Dichlorophenyl)-3-methyl-1H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1m). Yield: 64%. White solid. m.p. 313–315 °C. IR (KBr): 3277, 3183, 3091, 2965, 1672, 1613, 1560, 1538, 1510, 1437, 1338, 1275, 1213, 1083, 1038, 1013, 920, 848, 783 cm−1. 1H NMR (500 MHz, DMSO-d6): δ = 12.10 (bs, 1H, ArH), 10.25 (bs, 1H, ArH), 8.0 (d, J = 7.2 Hz, 1H, ArH), 7.80–7.72 (m, 3H, ArH), 7.48 (s, 1H, ArH), 7.26 (d, J = 8.4 Hz, 1H, ArH), 7.23 (d, J = 8.0 Hz, 1H, ArH), 5.71 (s, 1H, CH), 1.93 (s, 3H, CH3) ppm. 13C NMR (125 MHz, DMSO-d6): δ = 181.1, 180.8, 145.6, 144.1, 142.1, 136.2, 135.2, 133.0, 132.9, 132.6, 132.3, 131.4, 130.7, 128.6, 128.2, 126.2, 125.9, 113.6, 102.3, 33.7, 9.9 ppm. Anal. calcd for C21H13Cl2N3O2 (410.25): C, 61.48; H, 3.19; N, 10.24. Found: C, 61.41; H, 3.21; N, 10.35%.
4-(4-Methoxyphenyl)-2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1n). Yield, 80%. Brown solid. m.p. 232–234 °C. IR (KBr): 3283, 3254, 2972, 1672, 1613, 1560, 1541, 1510, 1437, 1338, 1275, 1213, 1088, 1041, 923, 836, 780 cm−1. 1H NMR (500 MHz, DMSO-d6): δ = 12.30 (s, 1H, NH), 10.20 (s, 1H, NH), 8.0 (d, J = 9.0 Hz, 1H, ArH), 7.84 (d, J = 8.0 Hz, 1H, ArH), 7.70–7.60 (m, 2H, ArH), 7.41 (s, 1H, ArH), 7.12 (d, J = 8.5 Hz, 2H, ArH), 6.74 (d, J = 8.5 Hz, 2H, ArH), 5.39 (s, 1H, CH), 3.63 (s, 3H, OCH3) ppm. 13C NMR (125 MHz, DMSO-d6): δ = 181.4, 180.9, 157.8, 141.5, 140.8, 135.1, 135.1, 132.9, 130.8, 130.5, 128.5, 126.1, 125.9, 114.5, 114.0, 106.4, 55.4, 35.5 ppm. Anal. calcd for C21H15N3O3 (357.36): C, 70.58; H, 4.23; N, 11.76. Found: C, 70.52; H, 4.26; N, 11.86%.
3-Methyl-4-propyl-2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1o). Yield: 64%. White solid. m.p. 218–220 °C. IR (KBr): 3210, 3188, 2961, 1683, 1653, 1573, 1453, 1340, 1262, 726, 619 cm−1. 1H NMR (300 MHz, DMSO-d6): δ = 12.10 (s, 1H, NH), 10.23 (s, 1H, NH), 8.0 (d, J = 6.9 Hz, 1H, ArH), 7.96 (d, J = 6.3 Hz, 1H, ArH), 7.80–7.70 (m, 2H, ArH), 5.35 (s, 1H, CH), 1.95 (s, 3H, CH3), 1.30–0.80 (m, 7H, 2CH2, and CH3) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 181.9, 181.2, 147.4, 142.8, 135.5, 133.5, 133.3, 131.1, 126.5, 126.4, 115.2, 102.7, 80.1, 30.0, 18.9, 15.0, 10.6 ppm. Anal. calcd for C18H17N3O2 (307.35): C, 70.34; H, 5.58; N, 13.67. Found: C, 70.41; H, 5.61; N, 13.77%.
3-Methyl-4-(furan-2-yl)-2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)-dione (1p). Yield: 71%. White solid. m.p. 246–248 °C. IR (KBr): 3258, 3170, 3023, 2962, 2902, 1663, 1616, 1600, 1543, 1502, 1424, 1371, 1213, 1145, 1061, 964, 842, 813, 752 cm−1. 1H NMR (300 MHz, DMSO-d6): δ = 12.15 (s, 1H, NH), 10.25 (s, 1H, NH), 8.02 (d, J = 7.5 Hz, 1H, ArH), 7.93 (d, J = 7.2 Hz, 1H, ArH), 7.86–7.74 (m, 2H, ArH), 7.74 (d, J = 7.2 Hz, 1H, ArH), 6.26 (dd, J = 3.0, 1.8 Hz, 1H, ArH), 6.04 (d, J = 3.0 Hz, 1H, ArH), 5.45 (s, 1H, CH), 2.10 (s, 3H, CH3) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 180.7, 180.4, 157.6, 141.5, 141.1, 134.8, 134.1, 132.6, 132.5, 130.3, 126.8, 125.8, 125.5, 111.4, 110.3, 104.4, 100.4, 29.4, 9.4 ppm. Anal. calcd for C19H13N3O3 (331.32): C, 68.88; H, 3.95; N, 12.68. Found: C, 68.82; H, 3.98; N, 12.79%.

Acknowledgements

L.H.C and T.P gratefully acknowledge financial support from the Department of Science and Technology India, with Sanction No. SR/FT/CS-042/2009 and SR/FT/CS-08/2010 respectively for carrying out this work. S.K and S.P are grateful to CSIR and UGC respectively for their research fellowships (SRF). Authors are also grateful to IIT Guwahati, Bose Institute, Kolkata and SAIF, Panjab University for providing analytical facilities for characterization of compounds.

References and notes

  1. (a) J. Yu, F. Shi and L.-Z. Gong, Acc. Chem. Res., 2011, 44, 1156 CrossRef CAS PubMed; (b) M. S. Singh, G. C. Nandi and T. Chanda, RSC Adv., 2013, 3, 14183 RSC; (c) A. Ulaczyk-Lesanko and D. G. Hall, Curr. Opin. Chem. Biol., 2005, 9, 266 CrossRef CAS PubMed; (d) Z. Xu, M. Ayaz, A. A. Cappelli and C. Hulme, ACS Comb. Sci., 2012, 14, 460 CrossRef CAS PubMed; (e) L.-Q. Lu, J.-R. Chen and W.-J. Xiao, Acc. Chem. Res., 2012, 45, 1278 CrossRef CAS PubMed; (f) I. S. Pereteanu and T. J. J. Muller, Org. Biomol. Chem., 2013, 11, 5127 RSC; (g) V. Tyagi, S. Khan, V. Bajpai, H. M. Gauniyal, B. Kumar and P. M. S. Chauhan, J. Org. Chem., 2012, 77, 1414 CrossRef CAS PubMed; (h) B. A. Dreikorn and G. L. Durst, Synthesis and Chemistry of Agrochemicals IV, ACS Symp. Ser., 1995, 584, 354 CrossRef CAS; (i) G. Zeni and R. C. Larock, Chem. Rev., 2006, 106, 4644 CrossRef CAS PubMed.
  2. (a) J. Zhu and H. Bienayme, Multicomponent Reactions, Wiley-VCH, Weinheim, 2005 Search PubMed; (b) D. Tejedor and F. Garcia-Tellado, Chem. Soc. Rev., 2007, 36, 484 RSC; (c) D. M. D'Souza and T. J. J. Mueller, Chem. Soc. Rev., 2007, 36, 1095 RSC; (d) A. Domling, Chem. Rev., 2006, 106, 17 CrossRef PubMed; (e) B. B. Toure and D. G. Hall, Chem. Rev., 2009, 109, 4439 CrossRef CAS PubMed; (f) E. Ruijter, R. Scheffelaar and R. V. A. Orru, Angew. Chem., Int. Ed., 2011, 50, 6234 CrossRef CAS PubMed; (g) N. R. Candeias, F. Montalbano, P. M. S. D. Cal and P. M. P. Gois, Chem. Rev., 2010, 110, 6169 CrossRef CAS PubMed.
  3. (a) B. M. Trost, Science, 1991, 254, 1471 CAS; (b) B. Jiang, T. Rajale, W. Wever, S.-J. Tu and G. Li, Chem. – Asian J., 2010, 5, 2318 CrossRef CAS PubMed; (c) P. A. Clarke, A. V. Zaytsev and A. C. Whitwood, Synthesis, 2008, 3530 CrossRef CAS; (d) F. Shi, D. X. Zhou, S. J. Tu, C. M. Li, L. J. Cao and Q. Q. Shao, J. Heterocycl. Chem., 2008, 45, 1305 CrossRef CAS; (e) P. A. Clarke, S. Santos and W. H. C. Martin, Green Chem., 2007, 9, 438 RSC.
  4. (a) D. Enders, C. Grondal and M. R. M. Hüttl, Angew. Chem., Int. Ed., 2007, 46, 1570 CrossRef CAS PubMed; (b) C. Graaff, E. Ruijter and R. V. A. Orru, Chem. Soc. Rev., 2012, 41, 3969 RSC; (c) S. Verma, S. Kumar, S. L. Jain and B. Sain, Org. Biomol. Chem., 2011, 9, 6943 RSC.
  5. M. N. Khan, S. Pal, S. Karamthulla and L. H. Choudhury, RSC Adv., 2014, 4, 3732 RSC.
  6. S. Pal, M. N. Khan, S. Karamthulla and L. H. Choudhury, RSC Adv., 2013, 3, 15705 RSC.
  7. (a) S. Fustero, M. Sanchez-Rosello, P. Barrio and A. Simon-Fuentes, Chem. Rev., 2011, 111, 6984 CrossRef CAS PubMed; (b) V. A. Chebanov, K. A. Gura and S. M. Desenko, Top. Heterocycl. Chem., 2010, 23, 41 CAS; (c) A. U. Sadek, R. A. Mekheimer, T. M. Mohamed, M. S. Moustafa and M. H. Elnagdi, Beilstein J. Org. Chem., 2012, 8, 18 CrossRef PubMed; (d) W. S. Bremner and M. G. Organ, ACS Comb. Sci., 2007, 9, 14 CAS; (e) V. A. Chebanov, V. E. Saraev, S. M. Desenko, V. N. Chernenko, I. V. Knyazeva, U. Groth, T. N. Glasnov and C. Oliver Kappe, J. Org. Chem., 2008, 73, 5110 CrossRef CAS PubMed; (f) A. Rahmati, T. Kenarkoohi and H. R. Khavasi, ACS Comb. Sci., 2012, 14, 657 CrossRef CAS PubMed; (g) H. Chen and D. Shi, J. Comb. Chem., 2010, 12, 571 CrossRef CAS PubMed; (h) R. Aggarwal, V. Kumar, R. Kumar and S. P. Singh, Beilstein J. Org. Chem., 2011, 7, 179 CrossRef CAS PubMed.
  8. (a) M. R. Zanwar, V. Kavala, S. D. Gawande, C.-W. Kuo, T.-S. Kuo, M.-L. Chen, C.-H. He and C.-F. Yao, Eur. J. Org. Chem., 2013, 8288 CrossRef CAS; (b) M. B. Teimouri and H. R. Khavasi, Tetrahedron, 2007, 63, 10269 CrossRef CAS; (c) K. Kobayashi, H. Shimizu, A. Sasaki and H. Suginome, J. Org. Chem., 1993, 58, 4614 CrossRef CAS; (d) M. Dabiri, Z. N. Tisseh and A. Bazgir, Dyes Pigm., 2011, 89, 63 CrossRef CAS; (e) Y. Duan, X. Wang, X. Xu, Z. Kang, M. Zhang, L. Song and H. Deng, Synthesis, 2013, 45, 2193 CrossRef CAS; (f) S. Kanchithalaivan, S. Sivakumar, R. R. Kumar, P. Elumalai, Q. N. Ahmed and A. K. Padala, ACS Comb. Sci., 2013, 15, 631 CrossRef CAS PubMed.
  9. (a) S. Karamthulla, S. Pal, M. N. Khan and L. H. Choudhury, RSC Adv., 2013, 3, 15576 RSC; (b) S. Pal, M. N. Khan, S. Karamthulla, S. J. Abbas and L. H. Choudhury, Tetrahedron Lett., 2013, 54, 5434 CrossRef CAS; (c) S. Pal, V. Singh, P. Das and L. H. Choudhury, Bioorg. Chem., 2013, 48, 8 CrossRef CAS PubMed; (d) S. Pal, L. H. Choudhury and T. Parvin, Mol. Diversity, 2012, 16, 129 CrossRef CAS PubMed; (e) M. N. Khan, S. Pal, T. Parvin and L. H. Choudhury, RSC Adv., 2012, 2, 12305 RSC.
  10. (a) C. M. Marson, Chem. Soc. Rev., 2012, 41, 7712 RSC; (b) S. K. Panday, Tetrahedron: Asymmetry, 2011, 22, 1817 CrossRef CAS; (c) Y. Li, H. Chen, C. Shi, D. Shi and S. Ji, J. Comb. Chem., 2010, 12, 231 CrossRef CAS PubMed; (d) B. List, P. Pojarliev, W. T. Biller and H. J. Martin, J. Am. Chem. Soc., 2002, 124, 829 Search PubMed; (e) A. Bogevig, N. Kumaragurubaran, K. Juhl, W. Zhuang and K. A. Jorgensen, Angew. Chem., Int. Ed, 2002, 41, 1790 CrossRef CAS.
  11. S. Radl, V. Zikan and F. Smejkal, Collect. Czech. Chem. Commun., 1985, 50, 1057 CrossRef CAS.
  12. (a) S. T. Selvi, V. Nadaraj, S. Mohan, R. Sasi and M. Hema, Bioorg. Med. Chem., 2006, 14, 3896 CrossRef CAS PubMed; (b) S. F. Thakor, D. M. Patel, M. P. Patel and R. G. Patel, Saudi Pharm. J., 2007, 15, 48 CAS.
  13. (a) O. A. El-Sayed and H. Y. Aboul-Enein, Arch. Pharm., 2001, 334, 117 CrossRef CAS; (b) M. A.-S. Amin, M. M. Ismail, S. E.-S. Barakat, A. A.-A. Abdul-Rahman, A. H. Bayomi and K. M. A. El-Gamal, Bull. Pharm. Sci., Assiut Univ., 2004, 27, 237 CAS.
  14. R. Wolin, D. Wang, J. Kelly, A. Afonso, L. James, P. Kirschmeier and A. T. McPhail, Bioorg. Med. Chem. Lett., 1996, 6, 195 CrossRef CAS.
  15. Z. Terashita, K. Naruo, O. Uchikawa and A. Nakanishi, PCT Int. Appl. 078705, 2002, Chem. Abstr., 2002, 137, 294966.
  16. E. Gondek, I. V. Kityk, J. Sanetra, P. Szlachcic, P. Armatys, A. Wisla and A. Danel, Opt. Laser Technol., 2006, 38, 487 CrossRef CAS.
  17. P. Cywinski, B. Wandelt and A. Danel, Adsorpt. Sci. Technol., 2004, 22, 719 CrossRef CAS.
  18. B. Jiang, G. Zhang, N. Ma, F. Shi, S.-J. Tu, P. Kaur and G. Li, Org. Biomol. Chem., 2011, 9, 3834 CAS.
  19. L. Wu, L. Yang, F. Yan, C. Yang and L. Fang, Bull. Korean Chem. Soc., 2010, 31, 1051 CrossRef CAS.
  20. L.-Q. Wu, R.-Y. Dong, C.-G. Yang and F.-L. Yan, J. Chin. Chem. Soc., 2010, 57, 19 CrossRef CAS.
  21. J. M. Khurana, A. Chaudhary, B. Nand and A. Lumb, Tetrahedron Lett., 2012, 53, 3018 CrossRef CAS.
  22. K. Karnakar, S. Narayana Murthy, K. Ramesh, G. Satish, J. Babu, J. B. Nanubolu and Y. V. D. Nageswar, Tetrahedron Lett., 2012, 53, 2897 CrossRef CAS.

Footnote

Electronic supplementary information (ESI) available: 1H NMR and 13C NMR spectra for all the products are available. See DOI: 10.1039/c4ra00876f

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.