Issue 32, 2014

Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications

Abstract

Narrowing the optical band gap of cerium oxide (CeO2) nanostructures is essential for visible light applications. This paper reports a green approach to enhance the visible light photocatalytic activity of pure CeO2 nanostructures (p-CeO2) through defect-induced band gap narrowing using an electrochemically active biofilm (EAB). X-ray diffraction, UV-visible diffuse reflectance/absorption spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, Raman spectroscopy, photoluminescence spectroscopy and high resolution transmission electron microscopy confirmed the defect-induced band gap narrowing of the CeO2 nanostructure (m-CeO2). The structural, optical, photocatalytic and photoelectrochemical properties also revealed the presence of structural defects caused by the reduction of Ce4+ to Ce3+ as well as an increase in the number of oxygen vacancies. The as-modified CeO2 (m-CeO2) nanostructure exhibited substantially enhanced, visible light-driven photoactivity for the degradation of 4-nitrophenol (4-NP) and methylene blue (MB) compared to the p-CeO2 nanostructure. The enhancement in visible light performance was attributed to defects (Ce3+ and oxygen vacancy), resulting in band gap narrowing and a high separation efficiency of photogenerated electron–hole pairs. Photoelectrochemical investigations also showed a significantly-enhanced separation efficiency of the photogenerated electron–hole charge carriers in the m-CeO2 nanostructure under visible light irradiation. The DC electrical conductivity of m-CeO2 showed higher electrical conductivity than p-CeO2 under ambient conditions. This study provides a new biogenic method for developing narrow band gap semiconductor nanostructures for efficient visible light driven photocatalysis and photoelectrode applications.

Graphical abstract: Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications

Supplementary files

Article information

Article type
Paper
Submitted
30 Jan 2014
Accepted
25 Mar 2014
First published
26 Mar 2014

RSC Adv., 2014,4, 16782-16791

Author version available

Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications

S. A. Ansari, M. M. Khan, M. O. Ansari, S. Kalathil, J. Lee and M. H. Cho, RSC Adv., 2014, 4, 16782 DOI: 10.1039/C4RA00861H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements