Synthesis of novel [3,1]-benzothiazepine and [3,1]-benzoxazepine derivatives with antitumoral activity

Walter R. Martíneza, Gardenia C. G. Militãob, Teresinha G. da Silvac, Ricardo O. Silvaa and Paulo H. Menezes*a
aUniversidade Federal de Pernambuco – Depto. Química Fundamental, Av. Jornalista Anibal Fernandes s/n, 50670-901, Recife, PE, Brazil. E-mail: paulo.menezes@pq.cnpq.br; Fax: +55-81-2126-8442
bUniversidade Federal de Pernambuco – Departamento de Fisiologia e Farmacologia, CCB, Cidade Universitária, Recife, PE, Brazil
cUniversidade Federal de Pernambuco – Departamento de Antibióticos, CCB, Cidade Universitária, Recife, PE, Brazil

Received 6th September 2013 , Accepted 12th March 2014

First published on 12th March 2014


Abstract

A new method for the synthesis of [3,1]-benzothiazepines and [3,1]-benzoxazepines from the reaction of C-allylanilines and isothiocyanates or isocyanates without the need for the isolation of any intermediate is described. The compounds were obtained in good to moderate yields and some exhibited cytotoxic activity against tumor cell lines.


Benzothiazepines and benzoxazepines constitute important building blocks in pharmaceutical research while they can be found in many drugs and preclinical leads.1

The synthesis of different isomeric forms of these compounds by varying the position of the heteroatoms in their structures together with their unique pharmacological properties make the development of new methods for the synthesis of medium-sized heterocycles containing N, S and O atoms a subject of great interest. Thus, several isomers of benzothiazepine2 and benzoxazepine3 rings were already described and some of them exhibited a wide variety of pharmacological effects.4

Herein, we wish to describe a new method for the synthesis of [3,1]-benzothiazepines and [3,1]-benzoxazepines for further evaluation of their antitumoral activities. The general method for the synthesis of [3,1]-benzoxazepines is based on the photochemical isomerization of quinoline N-oxides.5 However, it requires a significant number of steps for preparation of the starting materials used in the cyclization event, and sometimes proceed with a lack of regioselectivity.6 In the case of [3,1]-benzothiazepines derivatives, to our knowledge there are even few reports in the literature describing the synthesis of this class of compounds.7

We initially focused on experiments to find a route which gave the required starting materials. Thus, allylation of commercially available anilines 1a–d was performed following a literature procedure8 to yield the corresponding N-allylanilines 2a–d in good yields (Scheme 1).


image file: c3ra44937h-s1.tif
Scheme 1 Synthesis of N-allylanilines 2a–d.

Subsequent aza-Claisen rearrangement9 at 114–140 °C without the use of any solvent gave the corresponding C-allylanilines 3a–d in good yields (Scheme 2).


image file: c3ra44937h-s2.tif
Scheme 2 Synthesis of C-allylanilines 3a–d.

C-Allylanilines, 3 were then reacted with commercially available isothiocyanates, in dichloromethane to give in situ the corresponding thioureas. Subsequent addition of iodine10 to the reaction mixture gave the corresponding [3,1]-benzothiazepines 4 through a 7-exo-trig mode cyclization in good yields and without the isolation of any intermediate compound (Table 1).

Table 1 Synthesis of [3,1]-benzothiazepines 4 through iodocyclization

image file: c3ra44937h-u1.tif

Entry 3 Ar Time (h) [3,1]-Benzothiazepine Yielda (%)
a Isolated yield.b A complex mixture of products was obtained.
1 3a C6H5 72 image file: c3ra44937h-u2.tif 4a b
2 3b 4-Cl-C6H4 99 image file: c3ra44937h-u3.tif 4b 74
3 3b 3,4-Me2-C6H3 72 image file: c3ra44937h-u4.tif 4c 37
4 3b C10H7 120 image file: c3ra44937h-u5.tif 4d 63
5 3c 4-Cl-C6H4 72 image file: c3ra44937h-u6.tif 4e 69
6 3c C10H7 96 image file: c3ra44937h-u7.tif 4f 76
7 3d C6H5 72 image file: c3ra44937h-u8.tif 4g 52
8 3d 4-Cl-C6H4 120 image file: c3ra44937h-u9.tif 4h 77
9 3d 4-F-C6H4 48 image file: c3ra44937h-u10.tif 4i 70
10 3d 4-MeO-C6H4 120 image file: c3ra44937h-u11.tif 4j 64
11 3d 3,4-Me2-C6H3 120 image file: c3ra44937h-u12.tif 4k 74


The reaction yield does not seem to be strongly influenced by the electronic effects on the groups attached to the aromatic ring of both C-allylanilines 3 or isothiocyanates since the [3,1]-benzothiazepines bearing neutral, electron-withdrawing and electron-donating groups in the aromatic rings were compatible with the reaction conditions. The only exception occurred when 3a was used as precursor, where a complex mixture of products was observed. Further attempts to purify 4a from this mixture were unsuccessful (Table 1, entry 1).

Next, we extended the method for the synthesis of the [3,1]-benzoxazepines derivatives, 5a–c. In this case, the reaction solvent was replaced by tetrahydrofuran due to the low solubility of intermediates N,N′-diarylureas in dichloromethane.

Thus, reaction of C-allylanilines, 3a–b with phenylisocyanate led to the formation in situ of the corresponding N,N′-diarylureas after one hour. Subsequent cyclisation using iodine gave the corresponding [3,1]-benzoxazepines 5a–c in moderate yields (Table 2). The reaction using isocyanates gave lower yields (38–56%) when compared to the reaction using thiocyanates. This result could be explained by the lower nucleophilic character of the oxygen atom from the carbonyl group of the synthesized ureas when compared to the sulfur atom present in the thioureas.

Table 2 Synthesis of [3,1]-benzoxazepines 5 through iodocyclization

image file: c3ra44937h-u13.tif

Entry 3 [3,1]-Benzoxazepine, 5 Yield (%)
1 3a image file: c3ra44937h-u14.tif 5a 47
2 3b image file: c3ra44937h-u15.tif 5b 56
3 3c image file: c3ra44937h-u16.tif 5c 38


The cyclisation of ureas or thioureas could lead to two isomers being the C[double bond, length as m-dash]N bond endo or exo (Fig. 1). For example, for compound 5a, if the signal attributed to the proton bonded to nitrogen – Hb – presents an HMBC correlation with the carbon nuclei Cb from ring B, the obtained compound should have an endo C[double bond, length as m-dash]N bond (Fig. 1, structure 5a). However, if the hydrogen atom bonded to nitrogen –Ha – presents an HMBC correlation with the carbon nuclei Ca from ring A, the obtained compound should have an exo C[double bond, length as m-dash]N bond (Fig. 1, structure 5a′).


image file: c3ra44937h-f1.tif
Fig. 1 HMBC correlation between the endo and exo compounds.

From the spectrum obtained for 5a, ring A shows four different signals in the 1H NMR spectrum at δH 7.74 (d, 8.1 Hz, 1H), 7.23 (d, 7.2 Hz, 1H), 7.14 (t, 8.1 Hz, 1H) and 6.93 (td, 7.5, 1.0 Hz, 1H). Conversely, ring B shows only three signals at δH 7.52 (dd, 8.7, 0.9 Hz, 2H), 7.34–7.26 (m, 2H) and 7.07–7.00 (m, 1H). HMBC spectrum shown a correlation between the signal at δH 8.85, corresponding to N–H and the signals at δC 152.0 and 120.6. The signal at δC 152.0 was attributed to C[double bond, length as m-dash]N. In addition, the signal at δC 120.6 showed an HMQC correlation with the signal at δH 7.52, attributed to the proton at the ortho position in ring B. In this way, the signal at δC 120.6 was attributed to the carbon at the ortho position in the ring B, confirming the structure of the obtained compound as 5a.

The in vitro anticancer activity of benzoxathiepin,11 benzodioxepin12 and benzoxazepines13 on MCF-7 cells has been previously described. Further studies of 4,1-benzoxazepines by microarray technology showed that the main molecular targets of some of these compounds are pro-apoptotic genes with protein kinase activity such as GP132, ERN1 or RAC1, which prevent the metastatic progression. These facts prompt us to submit the synthesized compounds to the MTT assay14 for the evaluation of their cytotoxic effects on tumor cells.

The synthesized compounds were then screened at 25 μg mL−1 against HL-60 (human pro-myelocytic leukemia), NCI-H292 (human lung carcinoma) and HT-29 (human colon carcinoma) tumor cells lineages. The samples with growth inhibition over 90% were used to determine the IC50 values (concentration that causes 50% growth inhibition). Analogues 4h and 4i exhibited good cytotoxicities and their IC50 values (μg mL−1) were determined. The results are described in Table 3.

Table 3 IC50 and standard error values (μg mL−1) of two different experiments for compounds 4h and 4i
Compound HL-60 NCI-H292 HT-29
a Doxorubicin (DOX) was the positive control. *p < 0.05 compared compound 4i to 4h by t test.
4h 8.2 ± 0.2 15.1 ± 1.6 14.8 ± 1.1
4i 2.1 ± 0.9* 12.4 ± 3.1 7.7 ± 0.8*
DOXa 0.02 ± 0.005 0.1 ± 0.05 0.4 ± 0.05


From Table 3 it can be seen that compound 4h displayed moderate cytotoxic activity against all tested cancer cell lines, being more active for HL-60 cells. Compound 4i exhibited better antiproliferative activity against HL-60 and HT-29 cell lines,15 being also more active for HL-60 with an IC50 = 2.1 μg mL−1 demonstrating the potential of the newly synthesized compounds as antitumoral agents.

Conclusions

In conclusion, the method demonstrates to be useful for the synthesis of [3,1]-benzothiazepines and [3,1]-benzoxazepines derivatives without the need of the isolation of any intermediate.

Compounds 4h and 4i exhibit good antitumoral activity for HL-60 cells and are promising intermediates for the synthesis of an array of more potent target structures while the iodine atom can be used as an additional point of diversity.

Acknowledgements

The authors gratefully acknowledge CNPq (484778/2011-0), FACEPE (PRONEX APQ-0859-1.06/08), CAPES and INCT-INAMI for financial support. The authors are also thankful to Central Analítica (IQ-UNICAMP) for HRMS. P.H.M is thankful to CNPq for his fellowship.

Notes and references

  1. (a) J. B. Bariwal, K. D. Upadhyay, A. V. Manvar, J. C. Trivedi, J. S. Singh, K. S. Jain and A. K. Shah, Eur. J. Med. Chem., 2008, 43, 2279 CrossRef CAS PubMed; (b) X. Wu, F. Liu and Y. Zhou, J. Heterocycl. Chem., 2011, 48, 368 CrossRef CAS; (c) R. Budriesi, B. Cosimelli, P. Ioan, M. P. Ugenti, E. Carosati, M. Frosini, F. Fusi, R. Spisani, S. Saponara, G. Cruciani, E. Novellino, D. Spinelli and A. Chiarini, J. Med. Chem., 2009, 52, 2352 CrossRef CAS PubMed; (d) C. W. Lindsley, ACS Chem. Neurosci., 2010, 1, 343 CrossRef CAS PubMed; (e) C. W. Yin, S. K. Wo and Z. Zuo, J. Pharm. Biomed. Anal., 2012, 58, 83 CrossRef PubMed; (f) S. Fukamachi, H. Konishi and K. Kobayashi, Heterocycles, 2011, 83, 883 CrossRef CAS.
  2. Benzothiazepines synthesis: [1,5] (a) Z. Q. Dong, F. M. Liu and Z. L. Yuan, Mol. Diversity, 2011, 15, 963 CrossRef CAS PubMed; (b) D. B. Yadav, B. Dharmendra, G. L. Morgans, B. A. Aderibigbe, L. G. Madeley, M. A. Fernandes, J. P. Michael, C. B. de Koning and W. A. L. van Otterlo, Tetrahedron, 2011, 67, 2991 CrossRef CAS; (c) C. B. W. Phippen and C. S. P. McErlean, Tetrahedron Lett., 2011, 52, 1490 CrossRef CAS; (d) E. Ayral, P. Gloanec, G. Berge, G. de Nanteuil, P. Mennecier, A. Rupin, T. J. Verbeuren, P. Fulcrand, J. Martinez and J. F. Hernandez, Bioorg. Med. Chem. Lett., 2009, 19, 1386 CrossRef CAS PubMed ; [1,4]; (e) C. Spitz, V. Reboul and P. Metzner, Tetrahedron Lett., 2011, 52, 6321 CrossRef CAS; (f) L. Fodor, P. Csomós, A. Csampai and P. Sohar, Synthesis, 2010, 2943 CrossRef CAS; (g) M. Incerti, D. Acquotti, P. Sandor and P. Vicini, Tetrahedron, 2009, 65, 7487 CrossRef CAS ; [1,3]; (h) G. Campiani, S. Butini, C. Fattorusso, B. Catalanotti, S. Gemma, V. Nacci, E. Morelli, A. Cagnotto, I. Mereghetti, T. Mennini, M. Carli, P. Minetti, M. A. Di Cesare, D. Mastroianni, N. Scafetta, B. Galletti, M. A. Stasi, M. Castorina, L. Pacifici, M. Vertechy, S. di Serio, O. Ghirardi, O. Tinti and P. Carminati, J. Med. Chem., 2004, 47, 143 CrossRef CAS PubMed; (i) G. Campiani, V. Nacci, S. Bechelli, S. M. Ciani, A. Garofalo, I. Fiorini, H. Wikstrom, P. de Boer, Y. Liao, P. G. Tepper, A. Cagnotto and T. Mennini, J. Med. Chem., 1998, 41, 3763 CrossRef CAS PubMed ; [1,2]; (j) R. A. Abramovitch, R. A. Mavukel, B. Mavukel and J. R. Stowers, J. Chem. Soc., Chem. Commun., 1983, 520 RSC; (k) Y. Tamura, S. M. Bayomi, C. Mukai, M. Ikeda and M. Murase, Tetrahedron Lett., 1980, 21, 533 CrossRef CAS.
  3. Benzoxapines synthesis: [1,5]: (a) J. F. Liegeois, M. Deville, S. Dilly, C. Lamy, F. Mangin, M. Resimont and F. I. Tarazi, J. Med. Chem., 2012, 55, 1572 CrossRef CAS PubMed; (b) Y. Uto, Y. Ueno, Y. Kiyotsuka, Y. Miyazawa, H. Kurata, T. Ogata, T. Takagi, S. Wakimoto and J. Ohsumi, Eur. J. Med. Chem., 2011, 46, 1892 CrossRef CAS PubMed; (c) A. Levai, Heterocycles, 2008, 75, 2155 CrossRef CAS ; [1,4]; (d) M. Ghandi, T. Momeni, M. T. Nazeri, N. Zarezadeh and M. Kubicki, Tetrahedron Lett., 2013, 54, 2983 CrossRef CAS; (e) H. Kwiecien, M. Smist and A. Wrzesniewska, Curr. Org. Synth., 2012, 9, 828 CrossRef CAS ; [1,3]; (f) N. Kakusawa, K. Sakamoto, J. Kurita and T. Tsuchiya, Heterocycles, 1996, 43, 2091 CrossRef CAS; (g) A. R. Katrizky, O. Rubio, R. Awartani, N. Latif, N. Mishriky and F. M. Assad, Heterocycles, 1984, 22, 1155 CrossRef; (h) A. Albini, G. F. Bettinetti and G. Minoli, Tetrahedron Lett., 1979, 20, 3761 CrossRef ; [1,2]; (i) T. Kametani and H. Nemoto, Chem. Pharm. Bull., 1971, 19, 1325 CrossRef CAS.
  4. (a) K. Lombardo, M. A. Stasi and F. Borsini, Eur. J. Pharmacol., 2009, 621, 53 CrossRef CAS PubMed; (b) K. Lombardo, M. A. Stasi and F. Borsini, Eur. J. Pharmacol., 2009, 621, 53 CrossRef CAS PubMed; (c) R. Coccurello, A. Caprioli, R. Conti, O. Ghirardi, F. Borsini, P. Carminati and A. Moles, J. Med. Chem., 2004, 47, 143 CrossRef PubMed; (d) R. Coccurello, A. Caprioli, R. Conti, O. Ghirardi, F. Borsini, P. Carminati and A. Moles, J. Pharmacol. Exp. Ther., 2008, 326, 905 CrossRef CAS PubMed; (e) G. Campiani, S. Butini, S. Gemma, V. Nacci, C. Fattorusso, B. Catalanotti, G. Giorgi, A. Cagnotto, M. Goegan, T. Mennini, P. Minetti, M. A. Di Cesare, D. Mastroianni, N. Scafetta, B. Galletti, M. A. Stasi, M. Castorina, L. Pacifici, O. Ghirardi, O. Tinti and P. Carminati, J. Med. Chem., 2002, 45, 344 CrossRef CAS PubMed.
  5. (a) A. Albini, G. F. Bettinetti and G. Minoli, Org. Synth., 1990, 7, 23 Search PubMed; (b) C. Kaneko, H. Fujii, K. Hashiba, Y. Karasawa, M. Wakai, R. Hayashi and M. Somei, Chem. Pharm. Bull., 1982, 30, 74 CrossRef CAS; (c) A. Albini, G. F. Bettinetti and G. Minoli, Tetrahedron Lett., 1979, 20, 98 CrossRef; (d) C. Kaneko, A. Yamamoto and M. Hashiba, Chem. Pharm. Bull., 1979, 27, 946 CrossRef CAS; (e) N. Hata, Chem. Lett., 1978, 7, 1359 CrossRef; (f) C. Kaneko and R. Kitamura, Heterocycles, 1977, 6, 111 CrossRef CAS; (g) R. Kitamura, H. Fujii, K. Hashiba, M. Somei and C. Kaneko, Tetrahedron Lett., 1977, 18, 2911 CrossRef; (h) S. Yamada, M. Ishikawa and C. Kaneko, Chem. Pharm. Bull., 1975, 23, 2818 CrossRef CAS; (i) C. Kaneko, S. Hayashi and Y. Kobayashi, Chem. Pharm. Bull., 1974, 22, 2147 CrossRef CAS; (j) A. Kubo, S.-I. Sakai, S. Yamada, I. Yokoe and C. Kaneko, Chem. Pharm. Bull., 1968, 16, 1533 CrossRef CAS; (k) C. Kaneko, I. Yokoe and M. Ishikawa, Tetrahedron Lett., 1967, 8, 5237 CrossRef; (l) C. Kaneko and I. Yokoe, Tetrahedron Lett., 1967, 8, 5355 CrossRef; (m) O. Buchardt, Tetrahedron Lett., 1966, 7, 6221 CrossRef.
  6. (a) W. Y. Yang, S. A. Marrone, N. Minors, D. A. R. Zorio and I. V. Alabugin, Beilstein J. Org. Chem., 2011, 7, 813 CrossRef CAS PubMed; (b) T. Besson, G. Guillaumet, C. Lamazzi and C. W. Rees, Synlett, 1997, 704 CrossRef CAS; (c) P. Dalidowicz and J. S. Swenton, J. Org. Chem., 1993, 58, 4802 CrossRef CAS; (d) G. Capozzi, R. Ottana and G. Romeo, Heterocycles, 1987, 26, 39 CrossRef CAS; (e) J. P. Le Roux, P. L. Desbene and J. C. Cherton, J. Heterocycl. Chem., 1981, 18, 847 CrossRef CAS; (f) Y. Ito, K. Kobayashi and T. Saegusa, Tetrahedron Lett., 1978, 19, 2087 CrossRef; (g) C. Kaneko, H. Fujii, S. Kawai and M. Somei, Chem. Lett., 1978, 1277 CrossRef CAS; (h) C. Kaneko, S. Kawai and M. Somei, Chem. Lett., 1978, 1281 CrossRef CAS; (i) Y. Kobayashi, I. Kumadaki, Y. Hirose and Y. Hanzawa, J. Org. Chem., 1974, 39, 1836 CrossRef CAS.
  7. W. Fathalla, J. Marek and P. Pazdera, Heterocycl. Commun., 2002, 8, 79 CAS.
  8. I. Gonzalez, I. Bellas, A. Souto, R. Rodríguez and J. Cruces, Tetrahedron Lett., 2008, 49, 2002 CrossRef CAS.
  9. L. M. Acosta, A. Palma and A. Bahsas, Tetrahedron, 2010, 66, 8392 CrossRef CAS.
  10. (a) M. Jereb, D. Vrazic and M. Zupan, Tetrahedron, 2011, 67, 1355 CrossRef CAS; (b) K. Gilmore and I. V. Alabugin, Chem. Rev., 2011, 111, 6513 CrossRef CAS PubMed; (c) B. Godoi, R. F. Schumacher and G. Zeni, Chem. Rev., 2011, 111, 2937 CrossRef CAS PubMed.
  11. M. C. Nunez, F. Rodriguez-Serrano, J. A. Marchal, O. Caba, A. Aranega, M. A. Gallo, A. Espinosa and J. M. Campos, Tetrahedron, 2007, 63, 183 CrossRef CAS.
  12. A. Conejo-Garcia, M. C. Nunez, J. A. Marchal, F. Rodriguez-Serrano, A. Aranega, M. A. Gallo, A. Espinosa and J. M. Campos, Eur. J. Med. Chem., 2008, 43, 1742 CrossRef CAS PubMed.
  13. (a) K. Samanta, B. Chakravarti, J. K. Mishra, S. K. D. Dwivedi, L. V. Nayak, P. Choudhry, H. K. Bid, R. Konwar, N. Chattopadhyay and G. Panda, Bioorg. Med. Chem. Lett., 2010, 20, 283 CrossRef CAS PubMed; (b) M. Diaz-Gavilan, F. Rodriguez-Serrano, J. A. Gomez-Vidal, J. A. Marchal, A. Aranega, M. A. Gallo, A. Espinosa and J. M. Campos, Tetrahedron, 2004, 60, 11547 CrossRef CAS.
  14. J. M. Edmondson, L. S. Armstrong and A. O. Martinez, J. Tissue Cult. Methods, 1988, 11, 15 CrossRef CAS.
  15. In order to understand if the IC50 values are statistically significant, the t test, comparing 4i to 4h was performed. The results showed that the IC50 values for 4i and 4h are different only for HL-60 and HT-29.

Footnote

Electronic supplementary information (ESI) available: Experimental procedures, spectra and spectroscopic data for all compounds. See DOI: 10.1039/c3ra44937h

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.