Synthesis and biological evaluation of (−)-kainic acid analogues as phospholipase D-coupled metabotropic glutamate receptor ligands†
Abstract
(−)-Kainic acid potently increases stretch-induced afferent firing in muscle spindles, probably acting through a hitherto uncloned phospholipase D (PLD)-coupled mGlu receptor. Structural modification of (−)-kainic acid was undertaken to explore the C-4 substituent effect on the pharmacology related to muscle spindle firing. Three analogues 1a–c were synthesised by highly stereoselective additions of a CF3, a hydride and an alkynyl group to the Re face of the key pyrrolidin-4-one intermediate 5a followed by further structural modifications. Only the 4-(1,2,3-triazolyl)-kainate derivative 1c retained the kainate-like agonism, increasing firing in a dose-dependent manner. Further modification of 1c by introduction of a PEG-biotin chain on the 1,2,3-triazole fragment afforded compound 14 which retained robust agonism at 1 μM and appears to be suitable for future use in pull-down assays and far western blotting for PLD-mGluR isolation.