Open Access Article
This Open Access Article is licensed under a
Creative Commons Attribution 3.0 Unported Licence

Direct olefination of benzaldehydes into 1,3-diarylpropenes via a copper-catalyzed heterodomino Knoevenagel-decarboxylation-Csp3-H activation sequence

Yaping Zhao , Lu Sun , Tieqiang Zeng , Jiayi Wang , Yanqing Peng and Gonghua Song *
Shanghai Key Laboratory of Chemical Biology, Institute of Pesticides and Pharmaceuticals, East China University of Science and Technology, Shanghai 200237, P.R. China. E-mail: ghsong@ecust.edu.cn

Received 21st January 2014 , Accepted 26th March 2014

First published on 26th March 2014


Abstract

Copper-catalyzed direct olefination of benzaldehydes into 1,3-diarylpropenes by a novel domino Knoevenagel-decarboxylation-Csp3-H activation sequence is reported. This method provides a concise and effective route toward the synthesis of unsymmetrical 1,3-diarylpropene derivatives.


Introduction

In the last two decades, there has been increasing interest in the development of more efficient and environmentally friendly methods for chemical syntheses.1 One of the related research areas is the development of sequential formation of multiple C–C bonds in one pot.2 In general, these processes eliminate intermediate recovery steps, thereby considerably decreasing the amount of waste generated.3 For the past few years, a number of notable domino sequence reactions involving decarboxylation have been developed using simpler substrates like benzaldehydes.4 However, to the best of our knowledge, examples of utilizing benzaldehydes for one pot methylenation coupling into 1,3-diarylpropenes have not been explored.

Furthermore, 1,3-diarylpropenes are often known to be privileged structures or key intermediates in the synthesis of natural products and the development of biologically active compounds.5 Traditionally, strategies toward the syntheses of 1,3-diarylpropenes include allylic arylation/alkenylation (Scheme 1, route a),6 allylic selective defunctionalization (route b),7 decarboxylation of cinnamic acids (route c),8 cross-coupling reactions of potassium alkenyltrifluoroborates with benzyl halides (route d)9 and alkylation of benzene (route e).10 However, most of the above methods have to bear disadvantages such as limited substrates, multistep procedures and necessary prefunctionalization. Encouraged by the ecological and economic advantages of domino reactions, we wish to report herein the synthesis of unsymmetrical 1,3-diarylpropenes through a domino Knoevenagel-decarboxylation-Csp3-H activation sequence (Scheme 1).


image file: c4ob00155a-s1.tif
Scheme 1 Strategies toward syntheses of 1,3-diarylpropenes.

Results and discussion

We started our research by using benzaldehyde (1a) as the standard substrate. The combination of malonic acid, CuO, di-t-butyl peroxide (DTBP) and piperidine in toluene at 115 °C (oil bath temperature, unless otherwise noted) gave the desired product 1,3-diarylpropenes (2a) in 68% GC yield within 12 h (Table 1, entry 1). Other copper catalysts (entries 2 and 3), oxidants (entry 6), bases (entry 7), or solvents (entry 8) decreased the yield.11 Employment of Fe3O4 or ferrocene resulted in a dramatic decrease in yield (entries 4 and 5). Modifying the quantity of oxidant, base, catalyst and time did not afford better results (entries 9–11 and 15).11 Higher yields were obtained when the reaction was carried out at an elevated temperature. Particularly, trace amounts of the target product were detected below the boiling point of toluene (entry 12) and a good result in 77% GC yield was achieved at 125 °C (entry 13). However, when the reaction was conducted under an air atmosphere, the yield decreased to 49% (entry 14). A control experiment showed that the domino reaction was poorly efficient when the reaction was carried out in the absence of a copper catalyst (entry 16).
Table 1 Optimization of the conditions for copper catalyzed domino olefination of benzaldehydes into 1,3-diarylpropenesa

image file: c4ob00155a-u1.tif

Entry Catalyst Oxidant Base Solvent Yieldb (%)
a Catalytic conditions: benzaldehyde (0.3 mmol), malonic acid (0.5 mmol), toluene (0.5 mmol), solvent (2 mL), base (0.2 mmol), catalyst (20 mol%), oxidant (4 equiv.), 115 °C, 12 h, N2 atmosphere. b GC yields were given using dodecane as the internal standard. c The reaction was conducted within 24 h. d 0.1 mmol of piperidine was used. e 2 equiv. of DTBP was used. f The reaction was conducted at 105 °C under a N2 atmosphere. g The reaction was conducted at 125 °C under a N2 atmosphere. h The reaction was conducted at 125 °C under an air atmosphere. i 10 mol% of CuO was used.
1 CuO DTBP Piperidine Toluene 68
2 CuBr2 DTBP Piperidine Toluene 53
3 CuI DTBP Piperidine Toluene 50
4 Fe3O4 DTBP Piperidine Toluene 30
5 Ferrocene DTBP Piperidine Toluene Trace
6 CuO TBHP Piperidine Toluene 42
7 CuO DTBP DBU Toluene 24
8 CuO DTBP Piperidine DMSO 11
9c CuO DTBP Piperidine Toluene 69
10d CuO DTBP Piperidine Toluene 8
11e CuO DTBP Piperidine Toluene 33
12f CuO DTBP Piperidine Toluene NR
13g CuO DTBP Piperidine Toluene 77
14h CuO DTBP Piperidine Toluene 49
15i CuO DTBP Piperidine Toluene 55
16 DTBP Piperidine Toluene 11


Under the optimized reaction conditions, the allylation of a variety of benzaldehyde derivatives was examined. As shown in Table 2, benzaldehydes bearing a variety of substituents were found to afford exclusively 1,3-diarylpropenes in moderate to good yields (3-1a–3-1h). Obviously, an electron-donating group at the para-position, such as the methoxy substituent in 3-1b, afforded a higher yield compared with an electron-withdrawing group, such as a cyano group substituent in 3-1g. para-Substituted benzaldehydes (3-1b) gave a superior product yield compared to that of ortho- or meta-substituted benzaldehydes (3-1i and 3-1j). The domino reaction with 4-nitrobenzaldehyde (3-1h) was also successful. OH-, Cl- and Br-substituted compounds (3-1d, 3-1e and 3-1f) were also well tolerated. It turned out that multiple substituent groups (3-1k, 3-1l and 3-1m) would decrease the reaction efficiency.

Table 2 Substrate scope of the copper-catalyzed domino reaction of different benzaldehydes 1 with 2aa,b

image file: c4ob00155a-u2.tif

a Catalytic conditions: benzaldehydes (1) (0.3 mmol), malonic acid (0.5 mmol), toluene (2a) (2 mL), piperidine (0.2 mmol), CuO (20 mol%), DTBP (4 equiv.), 125 °C, 12 h, N2 atmosphere. b Isolated yields based on benzaldehyde.
image file: c4ob00155a-u3.tif


Subsequently, we surveyed the substrate scope of benzylic hydrocarbons (Table 3). All kinds of xylenes and mesitylene (3-2b–3-2e) offered the mono-coupling products in moderate yields. The toluenes substituted by electron-withdrawing groups (3-2f, 3-2g and 3-2h) were less reactive than xylenes (3-2b and 3-2d).

Table 3 Substrate scope of the copper-catalyzed domino reaction of 4-methoxybenzaldehyde (1b) with 2a,b

image file: c4ob00155a-u4.tif

a Catalytic conditions: 4-methoxybenzaldehyde (1b) (0.3 mmol), malonic acid (0.5 mmol), benzylic hydrocarbons (2) (2 mL), piperidine (0.2 mmol), CuO (20 mol%), DTBP (4 equiv.), 125 °C, 12 h, N2 atmosphere. b Isolated yields based on benzaldehyde.
image file: c4ob00155a-u5.tif


Considering the effects of electronic parameters on the reaction, it was found that the yield roughly decreased with the increase of Hammett constant (σ) values of the substituents on benzaldehyde. For example, the yield of 3-1b (p-CH3O, σp = −0.27) is 78%, and the yield of 3-1g (p-CN, σp = 0.66) is 53% as shown in Table 4. The exceptional substrates are p-hydroxyl benzaldehyde and m,m,p-tri-methoxyl benzaldehyde, which might be dominated by other factors such as hydrogen bonds and steric hindrance. However, a similar approach for benzylic hydrocarbons is not applicable.

Table 4 Relationship between Hammett constant values (σ) of the substituents on benzaldehyde and domino reaction yields
Substituents on benzaldehyde σ Yield
p-OH −0.37 41%
p-OCH3 −0.27 78%
p-CH3 −0.17 75%
m,m,p-tri-OCH3 −0.03 55%
p-H 0 72%
o-OCH3 0.04 65%
m-OCH3 0.12 66%
p-Cl 0.23 65%
p-Br 0.23 61%
m,m-di-OCH3 0.24 61%
o,p-di-Cl 0.63 60%
p-CN 0.66 53%
p-NO2 0.78 34%


Based on previous observations and literature reports,4h,8 we proposed a plausible catalytic cycle (Scheme 2). The reaction involves a domino anionic-metal catalyzed pathway,2a,4h wherein an incipient cinnamic acid (formed in situ from the K-D reaction) continuously undergoes copper catalyzed cross coupling and decarboxylation, leading to 1,3-diarylpropenes in one pot.8


image file: c4ob00155a-s2.tif
Scheme 2 Proposed mechanism.

Conclusions

In summary, we have developed the first copper-catalyzed one step direct olefination of benzaldehydes into 1,3-diarylpropenes via a novel domino Knoevenagel-decarboxylation-Csp3-H activation sequence. The unsymmetrical 1,3-diarylpropenes were obtained in moderate to good yields. All of the substrates were economical, simple and readily available.

Experimental

General information

All reactions were carried out under an N2 atmosphere. CuO was purchased from Aladdin-reagent with high purity (99.5%). All reagents were used as supplied without further purification and drying. Flash column chromatography was performed over silica gel (48–75 μm) and reactions were monitored by thin layer chromatography (TLC) using UV light (254 nm). 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded on a Bruker Avance 400 MHz NMR spectrometer using d6-DMSO as a solvent and tetramethylsilane as an internal standard (s = singlet, d = doublet, t = triplet, m = multiplet). MS analyses were performed on an Agilent 5975 GC-MS instrument (EI). HRMS analyses were performed on a Waters Micromass GCT instrument (EI).

General procedures for copper-catalyzed allylation of benzaldehydes

Malonic acid (52 mg, 0.5 mmol) and CuO (4.8 mg, 0.06 mol) were added into a 10 mL Schlenk flask. Then toluene (2 mL), benzaldehyde (31 μl, 0.3 mmol), DTBP (120 μl, 1.2 mmol), and piperidine (20 μl, 0.2 mmol) were added at room temperature. The reaction vessel was purged with N2 three times. The mixture was stirred at 125 °C for 12 h. After cooling to room temperature, the mixture was diluted with CH2Cl2 and water. The organic phase was washed with brine, dried with MgSO4, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (petroleum ether–ethyl acetate = 100[thin space (1/6-em)]:[thin space (1/6-em)]1) to afford the corresponding product.
(E)-1-1,3-Diphenylpropene (3-1a). Prepared according to the general procedure. A faint yellow liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.38–7.41 (m, 2H), 7.24–7.33 (m, 6H), 7.18–7.22 (m, 2H), 6.48 (d, J = 15.9 Hz, 1H), 6.46–6.38 (m, 1H), 3.52 (d, J = 5.8 Hz, 2H). 13C NMR (100 MHz, d6-DMSO) δ 140.52, 137.50, 130.99, 129.88, 129.02, 128.96, 128.92, 127.58, 126.53, 126.44, 39.06. GC/MS (m/z): [M]+ calcd for C15H14, 194.1; found, 194.1. HRMS (EI+) calcd for C15H14 [M+]: 194.1095. Found: 194.1096.
(E)-1-(4-Methoxyphenyl)-3-phenylpropene (3-1b). Prepared according to the general procedure. A faint yellow liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.35–7.18 (m, 7H), 6.87 (d, J = 8.8 Hz, 2H), 6.42 (d, J = 15.8 Hz, 1H), 6.30–6.22 (m, 1H), 3.73 (s, 3H), 3.49 (d, J = 6.9 Hz, 2H). 13C NMR (100 MHz, d6-DMSO) δ 158.97, 140.80, 130.46, 130.17, 128.91, 128.89, 127.63, 127.43, 126.46, 114.43, 55.51, 39.05. GC/MS (m/z): [M]+ calcd for C16H16O, 224.1; found, 224.1. HRMS (EI+) calcd for C16H16O [M+]: 224.1201. Found: 224.1202.
(E)-1-(4-Methyl)-3-phenylpropene (3-1c). Prepared according to the general procedure. A faint green solid. 1H NMR (400 MHz, d6-DMSO) δ 7.33–7.18 (m, 7H), 7.11 (d, J = 7.9 Hz, 2H), 6.44 (d, J = 15.9 Hz, 1H), 6.39–6.32 (m, 1H), 3.50 (d, J = 6.4 Hz, 2H), 2.27 (s, 3H). 13C NMR (100 MHz, d6-DMSO) δ 140.65, 136.79, 134.73, 130.84, 129.59, 128.93, 128.90, 128.77, 126.49, 126.36, 39.06, 21.19. GC/MS (m/z): [M]+ calcd for C16H16, 208.1; found, 208.1. HRMS (EI+) calcd for C16H16 [M+]: 208.1252. Found: 208.1251.
(E)-4-(3-Phenylprop-1-enyl)phenol (3-1d). Prepared according to the general procedure. A faint yellow solid. 1H NMR (400 MHz, d6-DMSO) δ 9.48 (s, 1H), 7.38 (s, 1H), 7.20 (d, J = 8.5 Hz, 3H), 6.75 (d, J = 8.5 Hz, 3H), 6.66 (dd, J = 17.7, 11.0 Hz, 1H), 5.78–5.55 (m, 2H), 5.07 (d, J = 11.2 Hz, 1H), 3.56 (dd, J = 15.9, 9.3 Hz, 1H), 3.11 (dd, J = 15.9, 8.1 Hz, 1H). 13C NMR (100 MHz, d6-DMSO) δ 164.36, 162.50, 141.74, 136.89, 135.27, 132.84, 132.02, 127.58, 120.43, 116.28, 113.90, 89.25, 42.20. GC/MS (m/z): [M]+ calcd for C15H14O, 210.1; found, 210.1. HRMS (EI+) calcd for C15H14O [M+]: 210.1045. Found: 210.1046.
(E)-1-(4-Chlorophenyl)-3-phenylpropene (3-1e). Prepared according to the general procedure. A faint yellow liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.43 (d, J = 8.6 Hz, 2H), 7.35–7.29 (m, 4H), 7.26–7.19 (m, 3H), 6.48–6.46 (m, 2H), 3.52 (d, J = 4.5 Hz, 2H). 13C NMR (100 MHz, d6-DMSO) δ 140.31, 136.46, 131.91, 130.97, 129.71, 128.96, 128.93, 128.14, 126.57, 39.01. GC/MS (m/z): [M]+ calcd for C15H13Cl, 228.1; found, 228.1. HRMS (EI+) calcd for C15H13Cl [M+]: 228.0706. Found: 228.0706.
(E)-1-(4-Bromophenyl)-3-phenylpropene (3-1f). Prepared according to the general procedure. A colorless liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.48 (d, J = 8.5 Hz, 2H), 7.38–7.19 (m, 7H), 6.49–6.42 (m, 2H), 3.51 (d, J = 5.3 Hz, 2H). 13C NMR (100 MHz, d6-DMSO) δ 140.27, 136.81, 131.88, 131.08, 129.78, 128.97, 128.93, 128.49, 126.58, 120.44, 39.03. GC/MS (m/z): [M]+ calcd for C15H13Br, 272.0; found, 272.0. HRMS (EI+) calcd for C15H13Br [M+]: 272.0201. Found: 272.0200.
(E)-4-(3-Phenylprop-1-enyl)benzonitrile (3-1g). Prepared according to the general procedure. A faint yellow liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.75 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 7.34–7.19 (m, 5H), 6.72–6.64 (m, 1H), 6.56 (d, J = 15.9 Hz, 1H), 3.56 (d, J = 6.9 Hz, 2H). 13C NMR (100 MHz, d6-DMSO) δ 142.26, 139.92, 134.38, 132.98, 129.70, 129.02, 129.00, 128.98, 127.23, 126.68, 119.45, 109.73, 39.09. GC/MS (m/z): [M]+ calcd for C16H13N, 219.1; found, 219.1. HRMS (EI+) calcd for C16H13N [M+]: 219.1048. Found: 219.1047.
(E)-4-(3-Phenylprop-1-enyl)nitrobenzene (3-1h). Prepared according to the general procedure. A yellow liquid. 1H NMR (400 MHz, d6-DMSO) δ 8.13 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 8.8 Hz, 2H), 7.37–7.15 (m, 6H), 6.73 (m, 1H), 6.60 (d, J = 15.9 Hz, 1H), 3.57 (d, J = 6.8 Hz, 2H). 13C NMR (100 MHz, d6-DMSO) δ 151.26, 149.11, 144.52, 140.28, 134.03, 133.78, 133.73, 132.11, 131.45, 129.06, 43.92. GC/MS (m/z): [M]+ calcd for C15H13NO2, 239.1; found, 239.1. HRMS (EI+) calcd for C15H13NO2 [M+]: 239.0946. Found: 239.0949.
(E)-1-(2-Methoxyphenyl)-3-phenylpropene (3-1i). Prepared according to the general procedure. A faint yellow solid. 1H NMR (400 MHz, d6-DMSO) δ 7.44 (dd, J = 7.6, 1.6 Hz, 1H), 7.32–7.18(m, 6H), 6.97 (d, J = 7.6 Hz, 1H), 6.89 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 15.9 Hz, 1H), 6.42–6.34 (m, 1H), 3.78 (s, 3H), 3.52 (d, J = 7.0 Hz, 2H). 13C NMR (100 MHz, d6-DMSO) δ 156.47, 140.73, 130.22, 128.93, 128.90, 128.79, 126.67, 126.47, 125.96, 125.57, 120.96, 111.70, 55.81, 39.37. GC/MS (m/z): [M]+ calcd for C16H16O, 224.1; found, 224.1. HRMS (EI+) calcd for C16H16O [M+]: 224.1201. Found: 224.1202.
(E)-1-(3-Methoxyphenyl)-3-phenylpropene (3-1j). Prepared according to the general procedure. A faint yellow liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.34–7.29 (m, 2H), 7.27–7.19 (m, 4H), 6.98 (d, J = 8.3 Hz, 2H), 6.78 (dd, J = 9.4, 2.1 Hz, 1H), 6.46 (d, J = 4.2 Hz, 1H), 6.45–6.40 (m, 1H), 3.74 (s, 3H), 3.52 (d, J = 4.6 Hz, 2H). 13C NMR (100 MHz, d6-DMSO) δ 159.99, 140.48, 138.99, 130.93, 130.22, 130.01, 128.97, 128.92, 126.53, 118.99, 118.99, 113.46, 111.51, 55.44, 39.04. GC/MS (m/z): [M]+ calcd for C16H16O, 224.1; found, 224.1. HRMS (EI+) calcd for C16H16O [M+]: 224.1201. Found: 224.1202.
(E)-1-(3,5-Dimethoxyphenyl)-3-phenylpropene (3-1k). Prepared according to the general procedure. A brown liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.34–7.29 (m, 2H), 7.26–7.19 (m, 3H), 6.58 (d, J = 2.1 Hz, 2H), 6.50–6.43 (m, 1H), 6.40 (d, J = 15.9 Hz, 1H), 6.37 (t, J = 2.1 Hz, 1H), 3.73 (s, 6H), 3.51 (d, J = 6.2 Hz, 2H). 13C NMR (100 MHz, d6-DMSO) δ 161.07, 140.44, 139.59, 131.03, 130.46, 128.99, 128.91, 128.82, 126.54, 104.42, 99.92, 55.58, 39.03. GC/MS (m/z): [M]+ calcd for C17H18O2, 254.1; found, 254.1. HRMS (EI+) calcd for C17H18O2 [M+]: 254.1307. Found: 254.1308.
(E)-1-(3,4,5-Trimethoxyphenyl)-3-phenylpropene (3-1l). Prepared according to the general procedure. A faint yellow liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.33–7.19 (m, 5H), 6.71 (s, 2H), 6.42–6.36 (m, 2H), 3.77 (s, 6H), 3.64 (s, 3H), 3.50 (d, J = 4.9 Hz, 2H). 13C NMR (100 MHz, d6-DMSO) δ 153.45, 140.58, 137.34, 133.28, 131.04, 129.30, 129.01, 128.91, 126.52, 103.80, 60.47, 56.25, 39.06. GC/MS (m/z): [M]+ calcd for C18H20O2, 284.1; found, 284.1. HRMS (EI+) calcd for C18H20O2 [M+]: 284.1412. Found: 284.1413.
(E)-1-(2,4-Chlorophenyl)-3-phenylpropene (3-1m). Prepared according to the general procedure. A colorless liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.67 (t, J = 7.0 Hz, 1H), 7.55 (d, J = 2.0 Hz, 1H), 7.37–7.29 (m, 3H), 7.28–7.19 (m, 3H), 6.77–6.67 (m, 1H), 6.59–6.47 (m, 1H), 3.57 (d, J = 6.9 Hz, 2H). 13C NMR (100 MHz, d6-DMSO) δ 139.85, 134.46, 134.25, 132.62, 129.28, 129.01, 128.96, 128.58, 128.01, 126.66, 125.48, 39.15. GC/MS (m/z): [M]+ calcd for C15H12Cl2, 262.0; found, 262.0. HRMS (EI+) calcd for C15H12Cl2 [M+]: 262.0316. Found: 262.0320.
(E)-3-(2-Methylphenyl)-1-(4-methoxyphenyl)-propene (3-2b). Prepared according to the general procedure. A faint yellow liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.31 (d, J = 6.8 Hz, 2H), 7.19–7.10 (m, 4H), 6.85 (d, J = 9.7 Hz, 2H), 6.33 (d, J = 15.9 Hz, 1H), 6.26–6.18 (m, 1H), 3.72 (s, 3H), 3.46 (d, J = 6.4 Hz, 2H), 2.28 (s, 3H). 13C NMR (100 MHz, d6-DMSO) δ 163.70, 143.58, 141.08, 135.20, 135.07, 134.96, 134.16, 132.33, 131.38, 131.35, 131.21, 119.17, 60.25, 41.41, 24.21. GC/MS (m/z): [M]+ calcd for C17H18O, 238.1; found, 238.1. HRMS (EI+) calcd for C17H18O [M+]: 238.1358. Found: 238.1359.
(E)-3-(3-Methylphenyl)-1-(4-methoxyphenyl)-propene (3-2c). Prepared according to the general procedure. A faint yellow liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.33 (d, J = 8.7 Hz, 2H), 7.19 (t, J = 7.5 Hz, 1H), 7.05–7.00 (m, 3H), 6.89–6.50 (m, 2H), 6.41 (d, J = 15.8 Hz, 1H), 6.28–6.20 (m, 1H), 3.73 (s, 3H), 3.45 (d, J = 6.9 Hz, 2H), 2.28 (s, 3H). 13C NMR (100 MHz, d6-DMSO) δ 158.97, 140.69, 137.92, 130.37, 130.19, 129.55, 128.77, 127.63, 127.49, 127.10, 125.99, 114.43, 55.51, 39.04, 21.45. GC/MS (m/z): [M]+ calcd for C17H18O, 238.1; found, 238.1. HRMS (EI+) calcd for C17H18O [M+]: 238.1358. Found: 238.1360.
(E)-3-(4-Methylphenyl)-1-(4-methoxyphenyl)-propene (3-2d). Prepared according to the general procedure. A faint yellow liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.33 (d, J = 8.7 Hz, 2H), 7.12 (s, 4H), 6.86 (d, J = 8.7 Hz, 2H), 6.39 (d, J = 15.8 Hz, 1H), 6.31–6.17 (m, 1H), 3.73 (s, 3H), 3.44 (d, J = 6.9 Hz, 2H), 2.27 (s, 3H). 13C NMR (100 MHz, d6-DMSO) δ 158.94, 137.65, 135.37, 130.24, 130.21, 129.45, 128.80, 127.67, 127.59, 114.43, 55.51, 38.63, 21.07. GC/MS (m/z): [M]+ calcd for C17H18O, 238.1; found, 238.1. HRMS (EI+) calcd for C17H18O [M+]: 238.1358. Found: 238.1359.
(E)-1-(4-Methoxyphenyl)-3-(3,5-dimethylphenyl)-propene (3-2e). Prepared according to the general procedure. A faint yellow liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.32 (d, J = 11.6 Hz, 2H), 6.85–6.82 (m, 5H), 6.40 (d, J = 15.8 Hz, 1H), 6.26–6.18 (m, 1H), 3.73 (s, 3H), 3.40 (d, J = 6.9 Hz, 2H), 2.23 (s, 6H). 13C NMR (100 MHz, d6-DMSO) δ 163.70, 145.34, 142.51, 135.01, 134.96, 132.63, 132.37, 132.31, 131.43, 119.18, 60.27, 43.77, 26.10. GC/MS (m/z): [M]+ calcd for C18H20O, 252.1; found, 252.1. HRMS (EI+) calcd for C18H20O [M+]: 252.1514. Found: 252.1513.
(E)-1-(4-Methoxyphenyl)-3-(4-chlorophenyl)-propene (3-2f). Prepared according to the general procedure. A faint green liquid. 1H NMR (400 MHz, d6-DMSO) δ 7.37–7.32 (m, 4H), 7.27 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.41 (d, J = 15.8 Hz, 1H), 6.28–6.20 (m, 1H), 3.74 (s, 3H), 3.48 (d, J = 6.9 Hz, 2H). 13C NMR (100 MHz, d6-DMSO) δ 159.03, 139.86, 131.09, 130.83, 130.78, 130.06, 128.80, 127.68, 126.88, 114.44, 55.53, 38.21. GC/MS (m/z): [M]+ calcd for C16H15ClO, 258.1; found, 258.1. HRMS (EI+) calcd for C16H15ClO [M+]: 258.0811. Found: 258.0813.
(E)-3-(4-Bromophenyl)-1-(4-methoxyphenyl)-propene (3-2g). Prepared according to the general procedure. A faint yellow solid. 1H NMR (400 MHz, d6-DMSO) δ 7.49 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.7 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.41 (d, J = 15.8 Hz, 1H), 6.28–6.20 (m, 1H), 3.74 (s, 3H), 3.47 (d, J = 6.9 Hz, 2H). 13C NMR (100 MHz, d6-DMSO) δ 159.04, 140.30, 131.72, 131.20, 130.86, 130.05, 127.68, 126.80, 119.51, 114.44, 55.53, 38.27. GC/MS (m/z): [M]+ calcd for C16H15BrO, 302.0; found, 302.0. HRMS (EI+) calcd for C16H15BrO [M+]: 302.0306. Found: 302.0306.

Acknowledgements

The financial support for this study from the National Basic Research Program of China (973 Program) (grant 2010CB126101) is gratefully acknowledged.

Notes and references

  1. P. T. Anastas and J. C. Warner, in Green Chemistry: Theory and Practice, Oxford University Press, Oxford, 1998 Search PubMed.
  2. For a seminal review on domino reactions, see: (a) L. F. Tietze, Chem. Rev., 1996, 96, 115 CrossRef CAS PubMed; for representative examples; (b) S. W. Li and R. A. Batey, Chem. Commun., 2007, 36, 3759 RSC; (c) K. Alex, A. Tillack, N. Schwarz and M. Beller, Angew. Chem., Int. Ed., 2008, 47, 2304 CrossRef CAS PubMed; (d) A. Trejos, A. Fardost, S. Yahiaoui and M. Larhed, Chem. Commun., 2009, 48, 7587 RSC; (e) D. M. Souza, F. Rominger and T. J. J. Muller, Chem. Commun., 2006, 39, 4096 RSC.
  3. A. Bruggink, R. Schoevaart and T. Kieboom, Org. Process Res. Dev., 2003, 7, 622 CrossRef CAS.
  4. (a) M. Koichi and O. Hirofumi, Chem. Commun., 2002, 22, 2626 Search PubMed; (b) P. Frederic, C. Sebastien, S. Morgane and D. Adam, J. Org. Chem., 2008, 73, 1975 CrossRef PubMed; (c) S. Amit, W. Roy, K. Naama and S. Doron, J. Am. Chem. Soc., 2008, 130, 5434 CrossRef PubMed; (d) X.-C. Huang, F. Wang, Y. Liang and J.-H. Li, Org. Lett., 2009, 11, 1139 CrossRef CAS PubMed; (e) M. Liang, S. Cecilia, P. Chiara and W. Peter, Tetrahedron Lett., 2009, 50, 6810 CrossRef CAS PubMed; (f) B. Alicia, H. Dacil and H. Rosendo, Eur. J. Org. Chem., 2010, 20, 3847 Search PubMed; (g) P. B. S. Dawadi and L. Johan, Synth. Commun., 2010, 40, 2539 CrossRef CAS; (h) S. Abhishek, S. Naina, K. Rakesh, S. Amit and A. K. Sinha, Chem. Commun., 2010, 46, 3283 RSC; (i) D. Zhao, C. Gao, X. Su, Y. He, J. You and Y. Xue, Chem. Commun., 2010, 46, 9049 RSC; (j) S. H. Kim, Y. M. Kim, H. S. Lee and J. N. Kim, Tetrahedron Lett., 2010, 51, 1592 CrossRef CAS PubMed; (k) L. J. Cotterill, R. W. Harrington, C. William and M. J. Hall, J. Org. Chem., 2010, 75, 4604 CrossRef CAS PubMed; (l) W. Xu and H. Fu, J. Org. Chem., 2011, 76, 3846 CrossRef CAS PubMed; (m) A. Carlos, J.-O. Gonzalo, A. Alberto, J. H. Busto, J. M. Peregrina and M. M. Zurbano, J. Org. Chem., 2011, 76, 6990 CrossRef PubMed; (n) K.-P. Claire, D. M. Alba, O. Julie, P. Guillaume, M. Pedro and P. Giovanni, J. Organomet. Chem., 2012, 714, 53 CrossRef PubMed; (o) G. Steven, L. Frederic, P. Guillaume, W. Benoit, S. Mathieu, C. Yves, M. Andre and P. Giovanni, Chem. Commun., 2012, 48, 5889 RSC; (p) P. Thanasekaran and M. Shanmugam, Tetrahedron Lett., 2012, 53, 4248 CrossRef PubMed; (q) T. David, M.-A. Gabriela, C. Leandro and G.-T. Fernando, Chem. – Eur. J., 2012, 18, 3468 CrossRef PubMed; (r) W. Reina, K. Takashi, K. Robert, O. Hiromichi, U. Daisuke, Y. Shosuke and M. Kenji, Tetrahedron Lett., 2013, 54, 1921 CrossRef PubMed; (s) W. Xu, U. Kloeckner and B. J. Nachtsheim, J. Org. Chem., 2013, 78, 6065 CrossRef CAS PubMed; (t) P. Svetlana, T. Tony, L. Vincent and J.-F. Briere, Adv. Synth. Catal., 2013, 355, 2513 CrossRef.
  5. (a) B. Kramer and S. R. Waldvogel, Angew. Chem., Int. Ed., 2004, 43, 2446 CrossRef CAS PubMed; (b) B. Kramer and S. R. Waldvogel, Angew. Chem., Int. Ed., 2004, 116, 2501 CrossRef; (c) J. C. Anderson, C. Headly, P. D. Stapleton and P. W. Taylor, Tetrahedron, 2005, 61, 7703 CrossRef CAS PubMed; (d) S. B. Wan, Bioorg. Med. Chem., 2005, 13, 2177 CrossRef CAS PubMed; (e) C. R. Su, Y. C. Shen, P. C. Kuo, Y. L. Leu, A. G. Damu, Y. H. Wang and T. S. Wu, Bioorg. Med. Chem. Lett., 2006, 16, 6155 CrossRef CAS PubMed; (f) M. Belley, C. C. Chan, Y. Gareau, M. Gallant, H. Juteau, K. Houde, N. Lachance, M. Labelle, N. Sawyer, N. Tremblay, S. Limontage, M. C. Carrière, D. Denis, G. M. Greig, D. Slipez, R. Gordon, N. Chauret, C. Lo, R. J. Zamboni and K. M. Metters, Bioorg. Med. Chem. Lett., 2006, 16, 5639 CrossRef CAS PubMed; (g) C. Ito, M. Itoigawa, T. Kanematsu, Y. Imamura, H. Tokuda, H. Nishino and H. Furukawa, Eur. J. Med. Chem., 2007, 42, 902 CrossRef CAS PubMed; (h) K. N. Mewett, S. P. Fernandez, A. K. Pasricha, A. Pong, S. O. Devenish, D. E. Hibbs, M. Chebib, G. A. R. Johnston and J. R. Hanrahan, Bioorg. Med. Chem., 2009, 17, 7156 CrossRef CAS PubMed; (i) K. Umehara, K. Nemoto, A. Matsushita, E. Terada, O. Monthakantirat, W. De-Eknamkul, T. Miyase, T. Warashina, M. Degawa and H. J. Noguchi, Nat. Prod., 2009, 72, 2163 CrossRef CAS PubMed; (j) S. Cheenpracha, C. Karalai, C. Ponglimanont and A. J. Kanjana-Opas, Nat. Prod., 2009, 72, 1395 CrossRef CAS PubMed; (k) F. M. Abdel Bar, M. A. Khanfar, A. Y. Elnagar, F. A. Badria, A. M. Zaghloul, K. F. Ahmad, P. W. Sylvester and K. A. El Sayed, Bioorg. Med. Chem., 2010, 18, 496 CrossRef CAS PubMed; (l) M. Namara and M. Yvonne, Bioorg. Med. Chem., 2011, 19, 1328–1348 CrossRef PubMed; (m) J. C. Anderson, R. McCarthy, S. Paulin and P. W. Taylor, Bioorg. Med. Chem. Lett., 2011, 21, 6996 CrossRef CAS PubMed; (n) M. Moriyasu, N. Nakatani, M. Ichimaru, Y. Nishiyama, A. Kato, S. G. Mathenge, F. D. Juma and P. B. C. Mutiso, J. Nat. Med., 2011, 65, 313 CrossRef CAS PubMed.
  6. (a) U. Yasuhiro, D. Hiroshi and H. Tamio, J. Org. Chem., 1999, 64, 3384 CrossRef; (b) C. Jordi, M. M. Marcial and P. Roser, Eur. J. Org. Chem., 2000, 2, 239 Search PubMed; (c) R. Martin and A. Fürstner, Angew. Chem., Int. Ed., 2004, 43, 3955 CrossRef CAS PubMed; (d) A. Fürstner, R. Martin, H. Krause, G. Seidel, R. Goddard and C. W. Lehmann, J. Am. Chem. Soc., 2008, 130, 8773 CrossRef PubMed; (e) M. Takashi, K. Kenji, S. Yoshiaki, S. Masami and F. Tsutomu, Synlett, 2008, 17, 2711 Search PubMed; (f) M. A. Y. Yoichi, W. Toshihiro, T. Kaoruand and U. Yasuhiro, Chem. Commun., 2009, 37, 5594 Search PubMed; (g) M. Takashi, K. Taketo, A. Taichi, K. Tomoko, F. Tsutomu and S. Masami, J. Org. Chem., 2009, 74, 2321 CrossRef PubMed; (h) R. Ghosh, N. N. Adarsh and A. Sarkar, J. Org. Chem., 2010, 75, 5320 CrossRef CAS PubMed; (i) A. M. Lauer, F. Mahmud and J. Wu, J. Am. Chem. Soc., 2011, 133, 9119 CrossRef CAS PubMed; (j) B. Yao, Y. Liu, M. K. Wang, J. H. Li, R. Y. Tang, X. G. Zhang and C. L. Deng, Adv. Synth. Catal., 2012, 354, 1069 CrossRef CAS; (k) C. Li, J. Xing, J. Zhao, P. Huynh, W. Zhang, P. Jiang and Y. J. Zhang, Org. Lett., 2012, 14, 390 CrossRef CAS PubMed; (l) Y. M. A. Yamada, S. M. Sarkar and Y. Uozumi, J. Am. Chem. Soc., 2012, 134, 3190 CrossRef CAS PubMed; (m) M. Takashi, K. Taketo, A. Taichi, K. Tomoko, F. Tsutomu and S. Masami, Eur. J. Org. Chem., 2013, 8, 1501 Search PubMed.
  7. (a) J. Wang, W. Huang, Z. Zhang, X. Xiang, R. Liu and X. Zhou, J. Org. Chem., 2009, 74, 3299 CrossRef CAS PubMed; (b) B. L. Yang and S. K. Tian, Chem. Commun., 2010, 46, 6180 RSC; (c) G. G. K. S. N. Kumar and K. K. Laali, Org. Biomol. Chem., 2012, 10, 7347 RSC.
  8. (a) H. Yang, P. Sun, Y. Zhu, H. Yan, L. Lu, X. Qu, T. Li and J. Mao, Chem. Commun., 2012, 48, 7847 RSC; (b) H. Yang, H. Yan, P. Sun, Y. Zhu, L. Lu, D. Liu, G. Rong and J. Mao, Green Chem., 2013, 15, 976 RSC.
  9. E. Alacid and C. Nájera, J. Org. Chem., 2009, 74, 2321 CrossRef CAS PubMed.
  10. P. Makowski, R. Rothe, A. Thomas, M. Niederberger and F. Goettmann, Green Chem., 2009, 11, 34 RSC.
  11. For a more detailed condition screening table, see the ESI..

Footnote

Electronic supplementary information (ESI) available: Detailed experimental procedures, characterization data, copies of 1H-NMR and 13C-NMR spectra. See DOI: 10.1039/c4ob00155a

This journal is © The Royal Society of Chemistry 2014