Cross-coupling/annulations of quinazolones with alkynes for access to fused polycyclic heteroarenes under mild conditions

Hui Lu a, Qin Yang b, Yirong Zhou b, Yanqin Guo b, Zhihong Deng a, Qiuping Ding a and Yiyuan Peng *ab
aJiangxi's Key Laboratory of Green Chemistry and College of Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
bKey Laboratory of Small Functional Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China. E-mail: yypeng@jxnu.edu.cn; yiyuanpeng@yahoo.com; Fax: +86-791-88120396

Received 26th September 2013 , Accepted 5th November 2013

First published on 5th November 2013


Abstract

Ruthenium-catalyzed regioselective oxidative cross-coupling/annulations of quinazolones with alkynes were successfully developed for direct access to fused polycyclic heteroarenes. The transformation proceeded well with a broad substrate scope under mild conditions to achieve moderate to high yields.


Introduction

In the last few decades, transition metal-catalyzed C–H bond activation for the construction of C–C bonds proved to be the most direct and efficient preparation of complex chemical compounds in an atom- and step-economic manner.1 Undoubtedly, the rhodium (Rh) catalyst was the most widely used to promote the oxidative coupling/cyclization sequence via C–H bond activation. A variety of directing groups have been successfully introduced for various Rh-complexes mediated dehydrogenative annulation processes.2 General functional groups containing oxygen or nitrogen atoms like carboxylic acid,3 ketone carbonyl,4 phenolic hydroxyl,5 imine,6 oxime,7 benzamide,8 benzhydroxamic acid,9 hydroxamic acid,10 amide,11 acetanilide,12 acrylamide,13 enamine,14 urea,15 azide16 and some small heterocycles17 including azole, benzimidazole, imidazole, benzoxazole, indole and pyridine etc., all served as potential directing groups. Very recently, a much less expensive ruthenium (Ru) catalyst has been employed by Ackermann et al. to replace the Rh catalyst for many similar processes.18

At the same time, fused polycyclic heteroaromatic frameworks bearing one or more nitrogen atoms have attracted significant attention for their unique biological and photo-electrochemical properties.19 However, the traditional synthetic routes were long and were usually costly and complicated to carry out. Recently, transition metal mediated C–H functionalizations have become an alternative and have partially circumvented the existing shortcomings. Moreover, alkynes have recently been used for extensive applications in various catalytic tandem sequential transformations to access multicyclic structures.2–18,20 Our group is always interested in the synthesis of quinazoline derivatives21 and we anticipated that the quinazolinone core structure may participate in catalytic tandem reactions with alkynes, because it contains an amide moiety, which has been proven to be an effective directing group (Scheme 1).18e,20 Herein, we present a useful ruthenium-catalyzed oxidative cross-coupling/annulation between quinazolones and alkynes for facile access to fused polycyclic heteroarenes in a regioselective fashion under mild conditions.


image file: c3ob41955j-s1.tif
Scheme 1 Recent examples of amide directing transition metal-catalyzed oxidative coupling/annulations of alkynes.

Results and discussion

As an initial attempt, 2-p-tolyl-4-quinazolinone (1a) was treated with diphenylacetylene (2a) in the presence of a Ru catalyst (5 mol% [RuCl2(p-cymene)]2), oxidant (2.2 equiv. of Cu(OAc)2) and base (2.0 equiv. of Na2CO3) in PhCl at 90 °C under a N2 atmosphere for 16 hours. To our delight, the reaction proceeded to isolate 3a in 82% yield (Table 1, entry 1). The structure of 3a was confirmed by X-ray diffraction analysis (see ESI). When the reaction was performed in air under identical conditions, the yield did not fluctuate (Table 1, entry 1). This result indicated that the atmosphere did not exert any influence on the transformation. The following optimizations of reaction parameters were all conducted systematically under air for simple experimental operation. Firstly, the solvent effects were investigated (see ESI). When toluene was used, the yield increased to 92% (Table 1, entry 2), while halogenated solvent DCE provided a moderate yield of 75% (see the ESI for detailed information). Further examination, including some aprotic polar solvents, such as THF, DMF, NMP and MeCN all delivered inferior outcomes. Protic MeOH was also examined and gave low efficiency (see ESI). Therefore the aromatic solvent toluene was chosen as the optimal solvent for further optimization. Next, a group of oxidants, such as copper salts and silver salts were screened (see ESI). The counter anion played a significant role in the process. Only acetate could enhance the catalytic activity, while others turned out to be unsuitable, which is in agreement with the literature description of carboxylate assistance for transition metal-catalyzed C–H functionalization. Then, both inorganic and organic bases were evaluated as additives (see ESI). Only K3PO4 gave a good yield of 79%, while other inorganic bases including K2CO3, Cs2CO3, NaOH, and t-BuOK all gave a moderate yield. On the other hand, among the organic bases, triethylamine generated the highest yield of 85%, while DBU and DABCO just provided lower yields. Finally, the reaction temperature was also investigated for its well-known significant influence on the reaction rate. Higher or lower temperatures seemed to be inappropriate for the transformation because decreased yields were generated in such cases (Table 1, entries 6 and 7).
Table 1 Optimization of reaction conditionsa

image file: c3ob41955j-u1.tif

Entry Solvent Oxidant Base T (°C) Yieldb (%)
a The reaction was carried out on 0.2 mmol of 1a with 1.5 equiv. of 2a in the presence of 5 mol% catalyst [RuCl2(p-cymene)]2, 2.2 equiv. oxidant and 2.0 equiv. base additive in 3 mL solvent at the indicated temperature for 16 hours. b Isolated yield. c The data in parentheses was obtained under N2 atmosphere reaction conditions.
1c PhCl Cu(OAc)2 Na2CO3 90 81(82)c
2 Toluene Cu(OAc)2 Na2CO3 90 92
3 Toluene AgOAc Na2CO3 90 87
4 Toluene Cu(OAc)2 Et3N 90 85
5 Toluene Cu(OAc)2 Na2CO3 120 67
6 Toluene Cu(OAc)2 Na2CO3 60 87
7 Toluene Cu(OAc)2·H2O Na2CO3 90 86


Encouraged by the above preliminary results, we continued to investigate the effect of catalyst and reagent loading on the catalytic process. The results are summarized in Table 2. The yield decreased sharply, accompanied by a reduction in the catalyst loading, oxidant loading or base loading (Table 2, entries 1, 4 and 6). On the other hand, when the dose of the three reagents increased, the yield stopped increasing (Table 2, entries 3, 5 and 7). Additionally, the control experiments showed that in the absence of any one of the reaction parameters or reagents, the reaction could no longer proceed. Furthermore, several other kinds of ruthenium catalysts, such as Ru(PPh3)Cl2, [Ru(bipy)3]Cl2·6H2O, Ru(COD)Cl2 and RuCl3·H2O were also examined, but only a trace amount of the expected product was detected.

Table 2 Catalyst and reagent loading screeninga

image file: c3ob41955j-u2.tif

Entry Ru catalyst (x mol%) Cu(OAc)2 (y equiv.) Na2CO3 (z equiv.) Yieldb (%)
a The reaction was carried out on 0.2 mmol of 1a with 1.5 equiv of 2a in the presence of x mol% catalyst [RuCl2(p-cymene)]2, y equiv. Cu(OAc)2 and z equiv. Na2CO3 in 3 mL toluene at 90 °C for 16 hours. b Isolated yield.
1 2.5 2.2 2.0 54
2 5.0 2.2 2.0 92
3 7.5 2.2 2.0 93
4 5.0 1.2 2.0 52
5 5.0 3.2 2.0 92
6 5.0 2.2 1.5 69
7 5.0 2.2 2.5 92


With the optimized reaction conditions in hand, the substrate scope was explored. As illustrated in Table 3, a wide range of quinazolinones and alkynes could be well tolerated in our catalytic system. Different substituents on the 2-position benzene ring were firstly probed (3a–3h). The substrates bearing electron-donor substitutions generally afforded better outcomes than electron-withdrawing ones. It was noteworthy that the halo atoms could be tolerated under identical conditions, albeit with moderate yields. Nevertheless, when the 2-position of the benzene ring was substituted by a methyl group on the 2′-position (3h), the yield sharply decreased to 37%, along with 56% recovery of the starting material 1h, probably due to the large steric hindrance. After finishing the above examination, we moved on to check the mother aromatic ring of the quinazolinone. The opposite influence of the electronic properties on the catalytic transformation was observed this time. Unlike the previous results, the electron-deficient quinazolinones all produced higher yields than electron-rich ones, no matter what the situations of the 2-position substituted benzene rings were (3i–3o). Subsequently, different symmetric internal alkynes were also assessed. Gratifyingly, both the alkyl and aryl alkynes could react smoothly with quinazolinone 1a to provide the expected product in high yields (3p–3t). Notably, diethyl acetylene generated the best result to give an almost quantitative yield of 3p.

Table 3 Substrate scope explorationa

image file: c3ob41955j-u3.tif

a The reaction was carried out on 0.2 mmol of 1a with 1.5 equiv. 2a in the presence of 5 mol% catalyst [RuCl2(p-cymene)]2, 2.2 equiv. Cu(OAc)2 and 2 equiv. Na2CO3 in 3 mL toluene at 90 °C for 16 hours. Isolated yield.
image file: c3ob41955j-u4.tif


The regioselectivities were evaluated by substitution in the 3′-position of the benzene ring of substrate 4 and unsymmetric alkynes 6 and 8 (Scheme 2). In the case of 4, only a single regioisomer 5a was detected, probably caused by the difference in steric hindrance. However, when unsymmetric alkynes 6 and 8 were utilized, moderate regioselectivities of 3[thin space (1/6-em)]:[thin space (1/6-em)]1 and 6[thin space (1/6-em)]:[thin space (1/6-em)]1, respectively, were obtained. The structures of 7b and 9b were also confirmed by X-ray diffraction analysis (see ESI).


image file: c3ob41955j-s2.tif
Scheme 2 Evaluation of the regioselectivity.

Moreover, some preliminary investigations were further carried out for better understanding the details of the exact reaction mechanism (Scheme 3). When the directing group amide was blocked by the methyl group (10), the reaction could not proceed any further. This means that the directing group was a pivotal element for the transition metal catalytic transformation. Then, when the 2-position aromatic ring was replaced by the alkyl chain, the much more challenged sp3 C–H bond activation did not occur. However, 2-propyl substituted quinazolinone 11 underwent coupling with diphenylacetylene (2a) via the N–H bond cleavage, to provide the product 12 in moderate yield. This phenomenon indicated that the N–H bond could be functionalized solely without the participation of the C–H bond activation.


image file: c3ob41955j-s3.tif
Scheme 3 Preliminary investigation of the reaction mechanism.

Conclusions

In summary, we have demonstrated an unprecedented ruthenium-catalyzed regioselective oxidative cross-coupling/cyclization of quinazolones with alkynes for the facile construction of fused tetracyclic heteroarenes. The transformation proceeded well with a broad substrate scope under mild conditions to achieve moderate to high yields. Moreover, the preliminary investigations of the reaction mechanism showed that the N–H bond could be functionalized solely without C–H bond cleavage. Further work is currently underway in our laboratory for better understanding of the exact reaction pathway.

Experimental section

All reactions were performed in reaction tubes under air. Flash column chromatography was performed using silica gel (60 Å pore size, 32–63 μm, standard grade). Analytical thin-layer chromatography was performed using glass plates pre-coated with 0.25 mm 230–400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Organic solutions were concentrated on rotary evaporators at ∼20 Torr (house vacuum) at 25–35 °C. Commercial reagents and solvents were used as received. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale.

General experimental procedure for synthesis of 3

A mixture of quinazolinone (1) (0.2 mmol, 1.0 eq.), the alkyne (2) (0.3 mmol, 1.5 eq.), [RuCl2(p-cymene)]2 (5%), Na2CO3 (0.4 mmol, 2.0 eq.), Cu(OAc)2 (0.44 mmol, 2.2 eq.), toluene (2 ml) were added to a reaction tube. The mixture was stirred at 90 °C for 16 hours. Afterwards, it was diluted with CH2Cl2 and transferred to a round bottomed flask. Silica was added to the flask and volatiles were evaporated under reduced pressure. The purification was performed by flash column chromatography on silica gel.
3-Methyl-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3a). White solid (yield 92%), mp: 264–265 °C. 1H NMR (400 MHz, CDCl3) δ 9.00 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.78 (t, J = 7.2 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.27–7.23 (m, 3H), 7.10–7.05 (m, 7H), 6.95 (s, 1H), 2.36 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.4, 147.7, 147.0, 142.7, 137.2, 135.6, 135.3, 134.4, 133.9, 131.2, 129.8, 128.5, 128.0, 127.7, 127.2, 127.2, 126.8, 126.7, 126.2, 125.4, 124.9, 120.1, 22.0; HRMS (ESI) calcd for C29H20KN2O (M + K+), 451.1213; Found, 451.1224; IR (cm−1) ν 2922, 1706, 1599, 1541, 1487, 1444, 1292, 1155, 822, 770, 694.
3-Methoxy-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3b). White solid (yield 95%), mp: 246–247 °C. 1H NMR (400 MHz, CDCl3) δ 9.04 (d, J = 8.8 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.84–7.76 (m, 2H), 7.73–7.70 (m, 1H), 7.54–7.51 (m, 1H), 7.35 (t, J = 6.8 Hz, 1H), 7.28–7.22 (m, 1H), 7.19 (d, J = 8.8 Hz, 1H), 7.13–7.11 (m, 3H), 7.08–7.05 (m, 4H), 6.57 (d, J = 6.4 Hz, 1H), 3.72 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 162.6, 161.4, 147.5, 147.2, 137.1, 135.9, 135.5, 134.4, 131.1, 129.3, 128.5, 128.1, 127.6, 127.3, 127.2, 127.2, 126.9, 126.5, 125.1, 120.7, 119.8, 116.3, 109.0, 55.4; HRMS (ESI) calcd for C29H20N2NaO2 (M + Na+), 451.1422; Found, 451.1440; IR (cm−1) ν 2918, 1700, 1608, 1541, 1492, 1461, 1285, 1236, 857, 761, 702.
3-(Dimethylamino)-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3c). Yellow solid (yield 96%), mp: 278–279 °C. 1H NMR (400 MHz, CDCl3) δ 8.91 (d, J = 9.2 Hz, 1H), 8.12 (d, J = 7.6 Hz, 1H), 7.79–7.71 (m, 3H), 7.52–7.51 (m, 1H), 7.31–7.22 (m, 3H), 7.10–6.97 (m, 6H), 6.98 (d, J = 8.8 Hz, 1H), 6.19 (s, 1H), 2.88 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 161.6, 152.6, 148.2, 147.7, 137.6, 136.1, 135.6, 134.2, 132.3, 131.1, 130.9, 128.9, 128.7, 128.5, 127.9, 127.2, 127.1, 126.6, 126.2, 124.2, 119.5, 116.0, 113.5, 106.6, 39.1; HRMS (ESI) calcd for C30H24N3O (M + H+), 442.1919; Found, 442.1920; IR (cm−1) ν 2960, 1728, 1608, 1537, 1492, 1467, 1290, 1124, 842, 778, 698.
5,6-Diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3d). White solid (yield 77%), mp: 261–262 °C. 1H NMR (400 MHz, CDCl3) δ 9.11 (d, J = 7.6 Hz, 1H), 8.16 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 6.8 Hz, 1H), 7.62 (t, J = 6.8 Hz, 1H), 7.55 (t, J = 7.2 Hz, 1H), 7.40 (t, J = 6.8 Hz, 1H), 7.25 (m, 3H), 7.18 (d, J = 7.6 Hz, 1H), 7.12–7.07 (m, 7H); 13C NMR (100 MHz, CDCl3) δ 161.3, 147.5, 146.9, 137.0, 135.5, 135.2, 134.5, 133.9, 132.0, 131.2, 128.5, 128.3, 128.0, 127.8, 127.3, 127.2, 127.1, 126.9, 126.8, 126.2, 125.6, 120.3; HRMS (ESI) calcd for C28H19N2O (M + H+), 399.1497; Found, 399.1506; IR (cm−1) ν 2930, 1697, 1607, 1546, 1487, 1468, 1298, 1137, 768, 696.
3-Fluoro-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3e). White solid (yield 67%), mp: 247–248 °C. 1H NMR (400 MHz, CDCl3) δ 9.13 (d, J = 9.2 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.87–7.82 (m, 2H), 7.41 (t, J = 6.8 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.35–7.36 (m, 3H), 7.14–7.06 (m, 7H), 6.84 (d, J = 9.6 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 165.1 (d, 1JCF = 252 Hz), 161.2, 146.9, 146.8, 136.7, 136.6, 136.3 (d, 3JCF = 10 Hz), 135.0, 134.6, 131.0, 130.3, 130.2, 128.4, 128.3, 127.6, 127.2, 127.1, 127.0, 126.7, 125.7, 123.7, 120.1, 116.6 (d, 2JCF = 23 Hz), 111.9 (d, 2JCF = 23 Hz); HRMS (ESI) calcd for C28H18FN2O (M + H+), 417.1403; Found: 417.1423; IR (cm−1) ν 2919, 1704, 1613, 1549, 1489, 1469, 1292, 1202, 863, 766, 695.
3-Chloro-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3f). White solid (yield 66%), mp: 236–237 °C. 1H NMR (400 MHz, CDCl3) δ 9.01 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.84–7.77 (m, 2H), 7.53 (d, J = 8.4 Hz, 1H), 7.39 (t, J = 6.8 Hz, 1H), 7.26 (m, 3H), 7.12–7.06 (m, 8H); 13C NMR (100 MHz, CDCl3) δ 161.1, 146.8, 146.7, 138.6, 136.7, 136.6, 135.3, 134.8, 134.6, 131.1, 128.9, 128.7, 128.4, 128.3, 127.6, 127.2, 127.1, 126.8, 126.6, 125.9, 125.7, 125.6, 120.2; HRMS (ESI) calcd for C28H18ClN2O (M + H+), 433.1108; Found: 433.1115; IR (cm−1) ν 2959, 1701, 1613, 1549, 1488, 1469, 1292, 1117, 863, 775, 695.
3-Bromo-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3g). White solid (yield 56%), mp: 223–224 °C. 1H NMR (400 MHz, CDCl3) δ 8.94 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.85–7.78 (m, 2H), 7.70 (d, J = 8.8 Hz, 1H), 7.40 (t, J = 6.8 Hz, 1H), 7.29–7.27 (m, 4H), 7.13–7.05 (m, 7H); 13C NMR (100 MHz, CDCl3) δ 161.1, 147.0, 146.7, 136.7, 136.6, 135.5, 134.7, 134.6, 131.6, 131.0, 128.9, 128.7, 128.4, 128.3, 127.6, 127.2, 127.1, 126.8, 126.5, 126.1, 125.9, 120.3; HRMS (ESI) calcd for C28H18BrN2O (M + H+), 477.0603; Found: 477.0597; IR (cm−1) ν 2930, 1712, 1604, 1544, 1479, 1330, 1288, 1175, 868, 744, 702.
1-Methyl-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3h). White solid (yield 37%), mp: 226–227 °C. 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 7.6 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.2 Hz, 1H), 7.44–7.37 (m, 3H), 7.26–7.24 (m, 3H), 7.09–7.06 (m, 8H), 3.25 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.6, 148.3, 146.2, 141.1, 137.0, 136.3, 135.6, 134.9, 134.2, 132.7, 131.3, 130.8, 128.5, 128.0, 127.2, 127.0, 126.9, 125.8, 125.7, 124.8, 120.1, 27.2; HRMS (ESI) calcd for C29H20N2NaO (M + Na+), 435.1473; Found, 435.1486; IR (cm−1) ν 2926, 1689, 1606, 1552, 1490, 1443, 1282, 1139, 802, 764, 701.
11-Methyl-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3i). White solid (yield 70%), mp: 251–252 °C. 1H NMR (400 MHz, CDCl3) δ 9.09 (d, J = 7.6 Hz, 1H), 8.05 (d, J = 7.6 Hz, 1H), 7.72–7.67 (m, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.56–7.52 (m, 2H), 7.25–7.18 (m, 3H), 7.17 (d, J = 7.6 Hz, 1H), 7.11–7.07 (m, 6H), 2.54 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.1, 147.6, 146.9, 145.4, 137.1, 135.6, 133.9, 132.3, 131.8, 131.1, 130.9, 128.8, 128.4, 128.2, 128.0, 127.4, 127.3, 127.2, 127.1, 127.0, 126.8, 126.4, 126.1, 117.9, 22.0; HRMS (ESI) calcd for C29H20N2NaO (M + Na+), 435.1473; Found, 435.1464; IR (cm−1) ν 2960, 1690, 1610, 1544, 1483, 1442, 1282, 1074, 790, 700.
10-Bromo-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3j). White solid (yield 86%), mp: 230–231 °C. 1H NMR (400 MHz, CDCl3) δ 9.06 (d, J = 8.0 Hz, 1H), 8.26 (s, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.61–7.54 (m, 2H), 7.26–7.25 (m, 3H), 7.18 (d, J = 7.6 Hz, 1H), 7.13–7.06 (m, 7H); 13C NMR (100 MHz, CDCl3) δ 160.1, 147.8, 145.7, 137.6, 136.7, 135.3, 135.1, 133.9, 132.3, 131.1, 131.0, 129.6, 128.7, 128.5, 128.2, 128.1, 127.4, 127.3, 127.2, 127.1, 126.3, 121.4, 118.8; HRMS (ESI) calcd for C28H18BrN2O (M + H+), 477.0603; Found, 477.0582; IR (cm−1) ν 2930, 1711, 1600, 1542, 1482, 1466, 1288, 1134, 821, 758, 697.
9-Fluoro-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3k). White solid (yield 82%), mp: 223–224 °C. 1H NMR (400 MHz, CDCl3) δ 9.07 (d, J = 8.0 Hz, 1H), 7.74–7.69 (m, 2H), 7.67–7.59 (m, 3H), 7.54–7.52 (m, 1H), 7.30–7.26 (m, 2H), 7.21 (d, J = 7.6 Hz, 1H), 7.11–7.06 (m, 6H), 7.03–7.01 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 161.0 (d, 1JCF = 265 Hz), 158.3, 148.9, 148.4, 136.4, 135.3, 135.0, 134.5 (d, 3JCF = 10 Hz), 134.2, 132.4, 132.3, 131.1, 131.0, 128.9, 128.5 (d, 4JCF = 5 Hz), 128.1, 127.8, 127.4, 127.1 (d, 4JCF = 4 Hz), 126.8, 126.3, 122.6 (d, 4JCF = 4 Hz), 111.7 (d, 2JCF = 21 Hz), 110.0 (d, 4JCF = 7 Hz); HRMS (ESI) calcd for C28H18FN2O (M + H+) 417.1403; Found: 417.1413; IR (cm−1) ν 2933, 1710, 1611, 1544, 1488, 1444, 1284, 1141, 815, 777, 700.
3,11-Dimethyl-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3l). White solid (yield 80%), mp: 252–253 °C. 1H NMR (400 MHz, CDCl3) δ 8.98 (d, J = 7.6 Hz, 1H), 8.05 (d, J = 7.6 Hz, 1H), 7.72–7.66 (m, 2H), 7.53 (s, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.28–7.24 (m, 2H), 7.21 (d, J = 8.0 Hz, 1H), 7.12–7.02 (m, 6H), 6.95 (s, 1H), 2.55 (s, 3H), 2.38 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.1, 147.8, 147.1, 145.4, 142.6, 137.3, 135.7, 135.3, 133.9, 132.3, 131.2, 131.0, 129.8, 128.9, 128.5, 128.0, 127.5, 127.2, 127.1, 126.8, 126.3, 126.1, 125.0, 117.8, 22.1, 22.0; HRMS (ESI) calcd for C30H22N2NaO (M + Na+), 449.1630; Found, 449.1652; IR (cm−1) ν 2918, 1729, 1610, 1543, 1487, 14639, 1287, 1124, 787, 695.
10-Bromo-3-methyl-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3m). White solid (yield 95%), mp: 254–255 °C. 1H NMR (400 MHz, CDCl3) δ 8.90 (d, J = 8.0 Hz, 1H), 8.23 (s, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.28–7.21 (m, 3H), 7.12–7.05 (m, 7H), 6.93 (s, 1H), 2.35 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 160.1, 147.9, 145.9, 143.0, 137.4, 136.9, 135.5, 135.3, 134.0, 131.1, 129.9, 129.5, 128.6, 128.5, 128.1, 128.0, 127.3, 127.2, 127.1, 126.9, 126.2, 124.8, 121.3, 118.4, 21.9; HRMS (ESI) calcd for C29H20BrN2O (M + H+), 491.0759; Found: 491.0740; IR (cm−1) ν 2923, 1689, 1597, 1541, 1489, 1463, 1292, 1153, 840, 728, 695.
3-Chloro-11-methyl-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazo-lin-8-one (3n). White solid (yield 57%), mp: 286–287 °C. 1H NMR (400 MHz, CDCl3) δ 8.94 (d, J = 8.8 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.56 (s, 1H), 7.47 (d, J = 8.8 Hz, 1H), 7.20–7.15 (m, 4H), 7.05–6.96 (m, 8H), 2.47 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.0, 147.0, 146.8, 145.7, 138.5, 136.8, 136.7, 135.3, 134.8, 131.1, 128.8, 128.7, 128.4, 128.2, 127.6, 127.5, 127.2, 127.1, 127.0, 126.4, 125.8, 125.6, 117.9, 22.1; HRMS (ESI) calcd for C29H20ClN2O (M + H+), 447.1264; Found: 447.1294; IR (cm−1) ν 2919, 1689, 1608, 1544, 1482, 1442, 1287, 1197, 875, 787, 708.
10-Bromo-3-chloro-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3o). White solid (yield 84%), mp: 232–233 °C. 1H NMR (400 MHz, CDCl3) δ 8.95 (d, J = 8.4 Hz, 1H), 8.23 (s, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.30–7.24 (m, 3H), 7.17–7.04 (m, 8H); 13C NMR (100 MHz, CDCl3) δ 159.9, 147.1, 145.5, 138.9, 137.7, 136.5, 136.4, 135.3, 134.6, 131.0, 129.6, 128.9, 128.6, 128.4, 128.3, 127.7, 127.3, 127.3, 127.1, 125.7, 125.5, 121.4, 119.0; HRMS (ESI) calcd for C28H17BrClN2O (M + H+), 511.0213; Found: 511.0233; IR (cm−1) ν 2927, 1705, 1617, 1541, 1479, 1444, 1287, 1217, 885, 828, 696.
5,6-Diethyl-3-methyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3p). White solid (yield 98%), mp: 103–104 °C. 1H NMR (400 MHz, CDCl3) δ 8.86 (d, J = 8.0 Hz, 1H), 8.31 (d, J = 7.6 Hz, 1H), 7.76–7.73 (m, 2H), 7.48 (s, 1H), 7.40 (t, J = 6.4 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 3.23 (q, J = 7.2 Hz, 2H), 2.91 (q, J = 7.2 Hz, 2H), 2.52 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 162.4, 147.7, 146.8, 142.4, 137.5, 134.0, 132.7, 128.7, 127.5, 126.7, 126.4, 125.1, 125.0, 124.6, 123.0, 120.0, 23.5, 22.1, 20.5, 14.5, 14.2; HRMS (ESI) calcd for C21H20N2NaO (M + Na+) 339.1473; Found: 339.1493; IR (cm−1) ν 2964, 2873, 1684, 1603, 1541, 1468, 1296, 1180, 820, 764, 698.
3-Methyl-5,6-dip-tolyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3q). White solid (yield 93%), mp: 298–299 °C. 1H NMR (400 MHz, CDCl3) δ 8.97 (d, J = 8.0 Hz, 1H), 8.16 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.78 (t, J = 8.0 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.08 (d, J = 7.6 Hz, 2H), 6.96–6.93 (m, 7H), 2.36 (s, 3H), 2.35 (s, 3H), 2.26 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.5, 147.8, 147.1, 142.6, 136.7, 136.2, 135.3, 134.3, 134.2, 132.6, 131.0, 129.6, 128.9, 128.7, 128.3, 128.0, 127.7, 127.2, 127.1, 126.6, 126.2, 125.2, 124.9, 120.2, 22.0, 21.4, 21.3; HRMS (ESI) calcd for C31H24N2NaO (M + Na+), 463.1786; Found, 463.1791; IR (cm−1) ν 2921, 1706, 1602, 1542, 1491, 1467, 1291, 1123, 831, 769, 694.
5,6-Bis(4-methoxyphenyl)-3-methyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3r). White solid (yield 90%), mp: 276–278 °C. 1H NMR (400 MHz, CDCl3) δ 8.95 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.78 (t, J = 7.2 Hz, 1H), 7.42–7.35 (m, 2H), 6.99–6.95 (m, 5H), 6.82 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H), 3.74 (s, 3H), 2.36 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.6, 158.5, 158.0, 147.8, 147.1, 142.6, 135.4, 134.4, 134.3, 132.2, 129.7, 129.6, 129.6, 127.9, 127.5, 127.1, 127.1, 126.6, 126.1, 125.2, 124.9, 120.2, 113.5, 112.7, 55.2, 55.0, 22.0; HRMS (ESI) calcd for C31H25N2O3 (M + H+), 473.1865; Found, 473.1894; IR (cm−1) ν 2923, 1701, 1601, 1545, 1510, 1468, 1289, 1247, 1176, 830, 768, 694.
5,6-Bis(4-fluorophenyl)-3-methyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3s). White solid (yield 90%), mp 249–250 °C. 1H NMR (400 MHz, CDCl3) δ 8.96 (d, J = 7.6 Hz, 1H), 8.12 (d, J = 7.6 Hz, 1H), 7.81–7.77 (m, 2H), 7.43–7.36 (m, 2H), 7.05–6.95 (m, 6H), 6.85–6.81 (m, 3H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.9 (d, 1JCF = 246 Hz), 161.4 (d, 1JCF = 245 Hz), 161.2, 147.4, 146.9, 142.9, 134.7, 134.5, 133.6, 133.1 (d, 4JCF = 4 Hz), 132.8 (d, 3JCF = 8.0 Hz), 131.4 (d, 4JCF = 3 Hz), 130.2 (d, 3JCF = 8.0 Hz), 130.1, 127.2, 127.1, 127.1, 126.8, 125.9, 125.5, 124.9, 120.0, 115.3 (d, 2JCF = 21 Hz), 114.5 (d, 2JCF = 22 Hz), 22.0; HRMS (ESI) calcd for C29H19F2N2O (M + H+), 449.1465; Found, 449.1488; IR (cm−1) ν 2921, 1681, 1600, 1548, 1508, 1467, 1293, 1223, 858, 778, 696.
5,6-Bis(4-chlorophenyl)-3-methyl-8H-isoquinolino[1,2-b]quinazolin-8-one (3t). Light yellow solid (yield 88%), mp: 256–257 °C. 1H NMR (400 MHz, CDCl3) δ 8.96 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 7.2 Hz, 1H), 7.84–7.76 (m, 2H), 7.43 (d, J = 7.6 Hz, 1H), 7.37 (t, J = 6.8 Hz, 1H), 7.28 (d, J = 7.6 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 6.98 (t, J = 9.6 Hz, 4H), 6.84 (s, 1H), 2.35 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.2, 147.3, 146.9, 143.0, 135.5, 134.6, 133.8, 133.6, 133.3, 132.8, 132.4, 131.0, 130.2, 129.7, 128.9, 128.6, 127.7, 127.3, 127.1, 126.8, 125.9, 125.6, 125.0, 119.9, 22.0; HRMS (ESI), calcd for C29H19Cl2N2O (M + H+), 481.0874; Found: 481.0883; IR (cm−1) ν 2927, 1708, 1602, 1542, 1489, 1467, 1291, 1095, 831, 768, 697.
2-Methyl-5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (5a). White solid (yield 49%), mp: 214–215 °C. 1H NMR (400 MHz, CDCl3) δ 8.93 (s, 1H), 8.17 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.82 (t, J = 7.2 Hz, 1H), 7.73–7.71 (m, 1H), 7.54–7.52 (m, 1H), 7.40 (t, J = 8.0 Hz, 2H), 7.27–7.25 (m, 2H), 7.13–7.10 (m, 3H), 7.08–7.06 (m, 4H), 2.58 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.4, 147.6, 146.9, 138.7, 137.1, 135.7, 134.4, 133.4, 132.3, 131.7, 131.1, 131.0, 128.9, 128.5, 128.0, 127.8, 127.2, 127.2, 126.9, 126.8, 126.7, 126.3, 125.6, 120.2, 21.7; HRMS (ESI) calcd for C29H21N2O (M + H+), 413.1654; Found, 413.1653; IR (cm−1) ν 2920, 1694, 1604, 1548, 1471, 1445, 1286, 1127, 770, 697.
5-(4-Methoxyphenyl)-3-methyl-6-phenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (7a). White solid, mp: 226–227 °C; 1H NMR (400 MHz, CDCl3) δ 8.97 (d, J = 8.0 Hz, 1H), 8.16 (d, J = 7.6 Hz, 1H), 7.86–7.79 (m, 2H), 7.41 (t, J = 8.4 Hz, 2H), 7.31–7.24 (m, 3H), 7.10–7.04 (m, 2H), 6.97–6.95 (m, 3H), 6.65 (d, J = 8.0 Hz, 2H), 3.72 (s, 3H), 2.36 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.6, 158.1, 147.8, 147.0, 142.7, 135.8, 135.1, 134.4, 134.0, 131.2, 129.7, 129.5, 128.1, 127.8, 127.1, 127.1, 126.7, 126.1, 125.3, 124.9, 120.2, 112.7, 55.0, 22.0; HRMS (ESI) calcd for C30H23N2O2 (M + H+), 443.1760; Found, 443.1736; IR (cm−1) ν 2930, 1699, 1605, 1545, 1492, 1467, 1293, 1246, 832, 779, 696.
6-(4-Methoxyphenyl)-3-methyl-5-phenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (7b). White solid, mp: 272–273 °C; 1H NMR (400 MHz, CDCl3) δ 8.99 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.15–7.13 (m, 3H), 7.07–7.04 (m, 2H), 6.98 (d, J = 8.8 Hz, 3H), 6.81 (d, J = 8.4 Hz, 2H), 3.80 (s, 3H), 2.38 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.4, 158.5, 147.7, 147.0, 142.7, 137.3, 135.5, 134.4, 134.3, 132.2, 131.0, 129.8, 128.9, 128.5, 127.6, 127.2, 127.1, 126.8, 126.7, 126.2, 125.3, 124.9, 120.1, 113.5, 55.2, 22.0; HRMS (ESI) calcd for C30H23N2O2 (M + H+), 443.1760; Found, 443.1736; IR (cm−1) ν 2926, 1704, 1602, 1545, 1511, 1468, 1292, 1248, 828, 768, 694.
3,6-Dimethyl-5-phenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (9a). White solid, mp: 185–186 °C; 1H NMR (400 MHz, CDCl3) δ 8.88 (d, J = 8.4 Hz, 1H), 8.32 (d, J = 8.0 Hz, 1H), 7.84–7.81 (m, 2H), 7.53 (t, J = 7.2 Hz, 2H), 7.48 (d, J = 7.2 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 6.8 Hz, 2H), 6.80 (s, 1H), 2.50 (s, 3H), 2.35 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 162.7, 147.8, 147.1, 142.4, 137.2, 134.3, 134.2, 133.5, 130.7, 129.0, 128.9, 128.8, 128.0, 127.1, 126.9, 126.7, 125.5, 125.3, 124.6, 120.2, 21.9, 14.1; HRMS (ESI) calcd for C24H19N2O (M + H+), 351.1497; Found: 351.1492; IR (cm−1) ν 2917, 1701, 1606, 1537, 1491, 1466, 1296, 828, 774, 697.
3,5-Dimethyl-6-phenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (9b). White solid, mp: 205–206 °C; 1H NMR (400 MHz, CDCl3) δ 8.96 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.76 (t, J = 7.6 Hz, 1H), 7.57 (s, 1H), 7.49–7.39 (m, 4H), 7.35 (t, J = 7.6 Hz, 1H), 7.31 (d, 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 161.0, 147.4, 147.0, 142.6, 138.0, 134.3, 134.1, 133.8, 129.5, 128.6, 127.8, 127.4, 127.3, 127.1, 126.6, 125.1, 125.0, 123.9, 120.2, 119.9, 22.1, 15.1; HRMS (ESI) calcd for C24H19N2O (M + H+), 351.1497; Found, 351.1492; IR (cm−1) ν 2946, 1701, 1625, 1537, 1467, 1446, 1314, 828, 774, 642.
(E)-3-(1,2-Diphenylvinyl)-2-propylquinazolin-4(3H)-one (12). White solid, mp: 151–152 °C. 1H NMR (400 MHz, CDCl3) δ 7.71 (t, J = 8.0 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 6.8 Hz, 3H), 7.37 (d, J = 8.0 Hz, 3H), 7.26 (t, J = 6.8 Hz, 3H), 7.23–7.18 (m, 3H), 6.84 (d, J = 7.2 Hz, 1H), 2.94 (t, J = 8.0 Hz, 2H), 1.94 (m, 2H), 1.05 (t, J = 7.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 169.8, 166.1, 152.2, 150.4, 135.6, 134.0, 133.3, 132.6, 130.5, 129.4, 129.3, 129.2, 128.3, 127.9, 122.8, 119.5, 117.5, 111.6, 42.1, 22.4, 14.1; HRMS (ESI) calcd for C25H19N2O (M + H+), 351.1497; Found, 351.1492; IR (cm−1) ν 2927, 1642, 1580, 1466, 1349, 1214, 1137, 832, 774, 604.

Acknowledgements

Financial support from National Natural Science Foundation of China (no. 21162012, 81261120413, and 21362014), Jiangxi Provincial Department of Science and Technology (for Jiangxi's Key Laboratory of Green Chemistry, and no. 20122BAB203007), Jiangxi Educational Committee (GJJ10386), and Foundation for Young People (Yang Qin) of Jiangxi Normal University is gratefully acknowledged.

Notes and references

  1. Selected reviews: (a) J. A. Gladysz, Chem. Rev., 2011, 111(3), 1167 CrossRef CAS PubMed (2011 Frontiers in Transition Metal Catalyzed Reactions); (b) M. Beller and C. Bolm, Transition metals for organic synthesis, Wiley-VCH, New York, 2004 Search PubMed; (c) Metal-catalyzed cross-coupling reactions, ed. A. de Meijere and F. Diederich, Wiley-VCH, New York, 2004 Search PubMed; (d) R. D. Larsen, Organometallics in process chemistry, Springer, Berlin, 2004 Search PubMed.
  2. T. Satoh and M. Miura, Chem.–Eur. J., 2010, 16, 11212 CrossRef CAS PubMed.
  3. (a) K. Ueura, T. Satoh and M. Miura, Org. Lett., 2007, 9, 1407 CrossRef CAS PubMed; (b) K. Ueura, T. Satoh and M. Miura, J. Org. Chem., 2007, 72, 5362 CrossRef CAS PubMed; (c) M. Shimizu, K. Hirano, T. Satoh and M. Miura, J. Org. Chem., 2009, 74, 3478 CrossRef CAS PubMed; (d) S. Mochida, K. Hirano, T. Satoh and M. Miura, J. Org. Chem., 2009, 74, 6295 CrossRef CAS PubMed.
  4. (a) F. W. Patureau, T. Besset, N. Kuhl and F. Glorius, J. Am. Chem. Soc., 2011, 133, 2154 CrossRef CAS PubMed; (b) K. Muralirajan, K. Parthasarathy and C. Cheng, Angew. Chem., Int. Ed., 2011, 50, 4169 CrossRef CAS PubMed.
  5. (a) T. Uto, M. Shimizu, K. Ueura, H. Tsurugi, T. Satoh and M. Miura, J. Org. Chem., 2008, 73, 298 CrossRef CAS PubMed; (b) M. Shimizu, H. Tsurugi, T. Satoh and M. Miura, Chem.–Asian J., 2008, 3, 881 CrossRef CAS PubMed; (c) S. Mochida, M. Shimizu, K. Hirano, T. Satoh and M. Miura, Chem.–Asian J., 2010, 5, 847 CrossRef CAS PubMed.
  6. (a) S. Lim, J. H. Lee, C. W. Moon, J. Hong and C. Jun, Org. Lett., 2003, 5, 2759 CrossRef CAS PubMed; (b) D. A. Colby, R. G. Bergman and J. A. Ellman, J. Am. Chem. Soc., 2006, 128, 5604 CrossRef CAS PubMed; (c) D. A. Colby, R. G. Bergman and J. A. Ellman, J. Am. Chem. Soc., 2008, 130, 3645 CrossRef CAS PubMed; (d) L. Li, W. W. Brennessel and W. D. Jones, J. Am. Chem. Soc., 2008, 130, 12414 CrossRef CAS PubMed; (e) T. Fukutani, N. Umeda, K. Hirano, T. Satoh and M. Miura, Chem. Commun., 2009, 5141 RSC; (f) N. Guimond and K. Fagnou, J. Am. Chem. Soc., 2009, 131, 12050 CrossRef CAS PubMed.
  7. (a) K. Parthasarathy and C. Cheng, J. Org. Chem., 2009, 74, 9359 CrossRef CAS PubMed; (b) X. Zhang, D. Chen, M. Zhao, J. Zhao, A. Jia and X. Li, Adv. Synth. Catal., 2011, 353, 719 CrossRef CAS.
  8. (a) T. K. Hyster and T. Rovis, J. Am. Chem. Soc., 2010, 132, 10565 CrossRef CAS PubMed; (b) R. Álvarez, C. Martínez, Y. Madich, J. G. Denis, J. M. Aurrecoechea and A. R. Lera, Chem.–Eur. J., 2010, 16, 12746 CrossRef PubMed; (c) N. Zhang, B. Li, H. Zhong and J. Huang, Org. Biomol. Chem., 2012, 10, 9429 RSC; (d) Y. Kajita, S. Matsubara and T. Kurahashi, J. Am. Chem. Soc., 2008, 130, 6058 CrossRef CAS PubMed; (e) H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto and N. Chatani, J. Am. Chem. Soc., 2011, 133, 14952 CrossRef CAS PubMed.
  9. (a) N. Guimond, C. Gouliaras and K. Fagnou, J. Am. Chem. Soc., 2010, 132, 6908 CrossRef CAS PubMed; (b) N. Guimond, S. I. Gorelsky and K. Fagnou, J. Am. Chem. Soc., 2011, 133, 6449 CrossRef CAS PubMed.
  10. (a) P. C. Too, Y. Wang and S. Chiba, Org. Lett., 2010, 12, 5688 CrossRef CAS PubMed; (b) P. C. Too, S. H. Chua, S. H. Wong and S. Chiba, J. Org. Chem., 2011, 76, 6159 CrossRef CAS PubMed.
  11. (a) J. Chen, G. Song, C. Pan and X. Li, Org. Lett., 2010, 12, 5426 CrossRef CAS PubMed; (b) J. Barluenga, M. Faňanás-Mastral, F. Aznar and C. Valdés, Angew. Chem., Int. Ed., 2008, 47, 6594 CrossRef CAS PubMed.
  12. (a) D. R. Stuart, M. Bertrand-Laperle, K. M. N. Burgess and K. Fagnou, J. Am. Chem. Soc., 2008, 130, 16474 CrossRef CAS PubMed; (b) D. R. Stuart, P. Alsabeh, M. Kuhn and K. Fagnou, J. Am. Chem. Soc., 2010, 132, 18326 CrossRef CAS PubMed.
  13. (a) Y. Su, M. Zhao, K. Han, G. Song and X. Li, Org. Lett., 2010, 12, 5462 CrossRef CAS PubMed; (b) T. K. Hyster and T. Rovis, Chem. Sci., 2011, 2, 1606 RSC.
  14. S. Rakshit, F. W. Patureau and F. Glorius, J. Am. Chem. Soc., 2010, 132, 9585 CrossRef CAS PubMed.
  15. M. P. Huestis, L. Chan, D. R. Stuart and K. Fagnou, Angew. Chem., Int. Ed., 2011, 50, 1338 CrossRef CAS PubMed.
  16. (a) Y. Wang, K. K. Toh, J. Lee and S. Chiba, Angew. Chem., Int. Ed., 2011, 50, 5927 CrossRef CAS PubMed; (b) T. Miura, M. Yamauchi and M. Murakami, Org. Lett., 2008, 10, 3085 CrossRef CAS PubMed.
  17. (a) N. Umeda, H. Tsurugi, T. Satoh and M. Miura, Angew. Chem., Int. Ed., 2008, 47, 4019 CrossRef CAS PubMed; (b) K. Morimoto, K. Hirano, T. Satoh and M. Miura, Org. Lett., 2010, 12, 2068 CrossRef CAS PubMed; (c) G. Zhang, L. Yang, Y. Wang, Y. Xie and H. Huang, J. Am. Chem. Soc., 2013, 135, 8850 CrossRef CAS PubMed.
  18. (a) L. Ackermann, A. V. Lygin and N. Hofmann, Org. Lett., 2011, 13, 3278 CrossRef CAS PubMed; (b) L. Ackermann and S. Fenner, Org. Lett., 2011, 13, 6548 CrossRef CAS PubMed; (c) L. Ackermann, A. V. Lygin and N. Hofmann, Angew. Chem., Int. Ed., 2011, 50, 6379 CrossRef CAS PubMed; (d) B. Li, H. Feng, S. Xu and B. Wang, Chem.–Eur. J., 2011, 17, 12573 CrossRef CAS PubMed; (e) L. Ackermann, L. Wang and A. V. Lygin, Chem. Sci., 2012, 3, 177 RSC; (f) L. Ackermann and A. V. Lygin, Org. Lett., 2012, 14, 764 CrossRef CAS PubMed; (g) M. Deponti, S. I. Kozhushkov, D. S. Yufit and L. Ackermann, Org. Biomol. Chem., 2013, 11, 142 RSC; (h) L. Wang and L. Ackermann, Org. Lett., 2013, 15, 176 CAS; (i) P. Villuendas and E. P. Urriolabeitia, J. Org. Chem., 2013, 78, 5254 CrossRef CAS PubMed; (j) W. Ma, K. Graczyk and L. Ackermann, Org. Lett., 2012, 14, 6318 CrossRef CAS PubMed; (k) C. Kornhaaß, J. Li and L. Ackermann, J. Org. Chem., 2012, 77, 9190 CrossRef PubMed.
  19. (a) T. Eicher and S. Hauptmann, The Chemistry of Heterocycles, Wiley-VCH, Weinheim, 2003 CrossRef; (b) A. R. Katrizky and A. F. Pozharskii, Handbook of Heterocyclic Chemistry, Pergamon, Amsterdam, 2nd edn, 2000 Search PubMed; (c) M. H. Elnagdi, S. A. S. Ghozlan and I. A. Abdelhamid, ARKIVOC, 2008, 54 CAS; (d) S. K. Meegalla, G. J. Stevens, C. A. McQueen, A. Y. Chen, C. Yu, L. F. Liu, L. R. Barrows and E. J. LaVoie, J. Med. Chem., 1994, 37, 3434 CrossRef CAS; (e) Y. H. Hong, W. J. Lee, S. H. Lee, J. K. Son, H. Kim, J. M. Nam, Y. Kwon and Y. Jahng, Biol. Pharm. Bull., 2010, 33, 1704 CrossRef CAS.
  20. (a) G. Song, D. Chen, C. Pan, R. H. Crabtree and X. Li, J. Org. Chem., 2010, 75, 7487 CrossRef CAS PubMed; (b) B. Li, H. Feng, N. Wang, J. Ma, H. Song, S. Xu and B. Wang, Chem.–Eur. J., 2012, 18, 12873 CrossRef CAS PubMed.
  21. Y. Y. Peng, G. Y. S. Qiu, Q. Yang, J. J. Yuan and Z. H. Deng, Synthesis, 2012, 1237 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available: Characterization data, 1H and 13C NMR spectra of all compounds, X-ray data for compounds 3a, 7b, and 9b (CIF). CCDC 962573–962575. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3ob41955j

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.