Issue 22, 2014

Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging

Abstract

Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA–OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)−1 were measured at 1.41 T for the oleic acid bilayer and PAA–OA coating, respectively. These values moderately reduce as the size of the Gd2O3 nanoplates increases, and are always larger for the PAA–OA coating. Cytotoxicity studies on human dermal fibroblast cells documented no significant toxicity, with 100% cell viability preserved up to 250 μM for the PAA–OA coated Gd2O3 nanoplates. Given the 10 times increase in longitudinal relaxivity over the commercially available Gd-based molecular agents and the favorable toxicity profile, the 2 nm PAA–OA coated Gd2O3 nanoplates could represent a new class of highly effective T1 MRI contrast agents.

Graphical abstract: Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging

Supplementary files

Article information

Article type
Paper
Submitted
23 Jun 2014
Accepted
09 Sep 2014
First published
11 Sep 2014

Nanoscale, 2014,6, 13637-13645

Author version available

Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging

M. Cho, R. Sethi, J. S. Ananta narayanan, S. S. Lee, D. N. Benoit, N. Taheri, P. Decuzzi and V. L. Colvin, Nanoscale, 2014, 6, 13637 DOI: 10.1039/C4NR03505D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements