Issue 2, 2014

Dinuclear heme and non-heme metal complexes as bioinspired catalysts for oxidation reactions

Abstract

Inspired by catalytic sites of cytochrome c oxidase (CcO) and nitric oxide reductase (NOR), a new series of dinuclear heme–non-heme complexes is described. The complexes are derived from the association between an iron(III)–protoporphyrin IX containing a covalently attached Gly-L-His-OMe residue to one propionic acid substituent (HMGH) and a metal complex with a tridentate amino-bis(benzimidazole) (BBH) ligand, mimicking the tris-histidine coordination of FeB and CuB in NOR and CcO, respectively. Besides the coordination of FeIII and CuII with the BBH ligand, we also explored the role of “non-biomimetic” metals, such as CoII, MnII, or ZnII, in order to establish the priority among the ancillary metal ions in cooperating with the ferric heme and promoting its catalytic activity in oxidation reactions. pH-spectrophotometric titrations show that the presence of the non-heme metal decreases the pKa of water-bound to hemin (pKa = 8.4 ± 0.1), with a larger effect with iron(III), copper(II) and zinc(II) complexes (pKa of 6.4 ± 0.1, 6.0 ± 0.1 and 6.5 ± 0.1, respectively), which suggests that an interaction with the non-heme metal center takes place also at a micromolar range. NMR spectra indicate that the interaction between hemin and the non-heme center is not strong enough to convert the high spin configuration of FeIII–heme to low spin as observed for CcO and NOR enzymes. The dinuclear complex enhances the peroxidase-like activity of heme in kinetic studies performed at pH 5.5, 7.0 (using 3-(4-hydroxyphenyl)-propanoic acid as the substrate) and 9.0 (using o-phenylenediamine). In particular, the stronger effects are observed with FeIII, CuII, and CoII complexes, which increase the turnover rates of hemin throughout the pH range analyzed. At neutral and basic pH the KM value decreases up to one fourth indicating a positive cooperation between HMGH and [M(BBH)]n+ in binding the substrates. Moreover, the presence of the non-heme center facilitates the binding of H2O2 and formation of high valent ˙PFeIV[double bond, length as m-dash]O species. These data show that interaction between the two metal centers occurs with heme in several oxidation states.

Graphical abstract: Dinuclear heme and non-heme metal complexes as bioinspired catalysts for oxidation reactions

Supplementary files

Article information

Article type
Paper
Submitted
16 Oct 2013
Accepted
13 Nov 2013
First published
13 Nov 2013

New J. Chem., 2014,38, 518-528

Dinuclear heme and non-heme metal complexes as bioinspired catalysts for oxidation reactions

V. Pirota, F. Gennarini, D. Dondi, E. Monzani, L. Casella and S. Dell'Acqua, New J. Chem., 2014, 38, 518 DOI: 10.1039/C3NJ01279D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements