Issue 6, 2014

Catalytic transesterification of cellulose in ionic liquids: sustainable access to cellulose esters

Abstract

Catalytic transesterifications of cellulose were studied under homogeneous conditions using the ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) as a solvent. Cellulose was thus efficiently converted into cellulose esters employing various methyl esters and 10 mol% of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as catalyst. 1H NMR analysis of the products revealed up to 2.3 turnovers of the methyl esters per catalyst molecule, leading to degrees of substitution (DS) of up to 0.69. Although a comparatively low turnover number (TON) is observed, the developed methodology represents the first successful homogeneous catalytic reaction on cellulose. Furthermore, the new method is an important step forward in terms of sustainability, since the BMIMCl–DMSO mixture can be recycled and reused for the reaction, and toxic and corrosive chemicals commonly employed for cellulose esterification (such as anhydrides, acid chlorides and bromides, organic bases, all in overstoichiometric amounts) are avoided. To demonstrate the versatility of this transesterification, an aromatic (cellulose benzoate), an aliphatic (cellulose butyrate), and a fatty acid containing cellulose ester (cellulose 10-undecenoate) were prepared. Additionally, cellulose 10-undecenoate was successfully used for thiol–ene grafting onto reactions employing two thiols for efficient thiol–ene addition reactions.

Graphical abstract: Catalytic transesterification of cellulose in ionic liquids: sustainable access to cellulose esters

Article information

Article type
Paper
Submitted
21 Feb 2014
Accepted
09 Apr 2014
First published
10 Apr 2014

Green Chem., 2014,16, 3266-3271

Catalytic transesterification of cellulose in ionic liquids: sustainable access to cellulose esters

A. Schenzel, A. Hufendiek, C. Barner-Kowollik and M. A. R. Meier, Green Chem., 2014, 16, 3266 DOI: 10.1039/C4GC00312H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements