Issue 3, 2014

Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells

Abstract

Transfer of photogenerated holes from the absorber species to the p-type hole conductor is fundamental to the performance of solid-state sensitized solar cells. In this study, we comprehensively investigate hole diffusion in the Sb2S3 absorber and hole transfer across the Sb2S3–CuSCN interface in the TiO2–Sb2S3–CuSCN system using femtosecond transient absorption spectroscopy, carrier diffusion modeling, and photovoltaic performance studies. Transfer of photogenerated holes from Sb2S3 to CuSCN is found to be dependent on Sb2S3 film thickness, a trend attributed to diffusion in the Sb2S3 absorber. However, modeling reveals that this process is not adequately described by diffusion limitations alone as has been assumed in similar systems. Therefore, both diffusion and transfer across the Sb2S3–CuSCN interface are taken into account to describe the hole transfer dynamics. Modeling of diffusion and interfacial hole transfer effects reveal that interfacial hole transfer, not diffusion, is the predominant factor dictating the magnitude of the hole transfer rate, especially in thin (<20 nm) Sb2S3 films. Lastly, the implications of these results are further explored by photovoltaic measurements using planar TiO2–Sb2S3–CuSCN solar cells to elucidate the role of hole transfer in photovoltaic performance.

Graphical abstract: Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells

Supplementary files

Article information

Article type
Paper
Submitted
25 Nov 2013
Accepted
27 Jan 2014
First published
27 Jan 2014

Energy Environ. Sci., 2014,7, 1148-1158

Author version available

Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells

J. A. Christians, D. T. Leighton and P. V. Kamat, Energy Environ. Sci., 2014, 7, 1148 DOI: 10.1039/C3EE43844A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements