Issue 6, 2014

Photocatalytic conversion of carbon dioxide into methanol in reverse fuel cells with tungsten oxide and layered double hydroxide photocatalysts for solar fuel generation

Abstract

The phenomena of the photocatalytic oxidation of water and photocatalytic reduction of CO2 were combined using reverse photofuel cells, in which the two photocatalysts, WO3 and layered double hydroxide (LDH), were separated by a polymer electrolyte (PE) film. WO3 was used for the photooxidation of water, whereas LDH, comprising Zn, Cu, and Ga, was used for the photoreduction of CO2. For this process, photocatalysts pressed on both sides of the PE film were irradiated with UV-visible light through quartz windows and through the space in carbon electrode plates and water-repellent carbon paper for both gas flow and light transmission. 45% of the photocatalyst area was irradiated through the windows. The protons and electrons, which were formed on WO3 under the flow of helium and moisture, transferred to the LDH via the PE and external circuit, respectively. Methanol was the major product from the LDH under the flow of CO2 and helium. The observed photoreduction rates of CO2 to methanol accounted for 68%–100% of photocurrents. This supports the effectiveness of the combined photooxidation and photoreduction mechanism as a viable strategy to selectively produce methanol. In addition, we tested reverse photofuel cell-2, which consisted of a WO3 film pressed on C paper and LDH film pressed on Cu foil. The photoelectrodes were immersed in acidic solutions of pH 4, with the PE film distinguishing the two compartments. Both the photoelectrodes were completely irradiated by UV-visible light through the quartz windows. Consequently, the photocurrent from the LDH under CO2 flow to WO3 under N2 flow was increased by 2.4–3.4 times in comparison to photofuel cell-1 tested under similar conditions. However, the major product from the LDH was H2 rather than methanol using photofuel cell-2. The photogenerated electrons in the irradiated area of the photocatalysts were obliged to diffuse laterally to the unirradiated area of photocatalysts in contact with the C papers in photofuel cell-1. This lateral diffusion reduced the photocatalytic conversion rates of CO2, despite the advantages of photofuel cell-1 in terms of selective formation and easy separation of gas-phase methanol.

Graphical abstract: Photocatalytic conversion of carbon dioxide into methanol in reverse fuel cells with tungsten oxide and layered double hydroxide photocatalysts for solar fuel generation

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 2013
Accepted
18 Feb 2014
First published
18 Feb 2014

Catal. Sci. Technol., 2014,4, 1644-1651

Author version available

Photocatalytic conversion of carbon dioxide into methanol in reverse fuel cells with tungsten oxide and layered double hydroxide photocatalysts for solar fuel generation

M. Morikawa, Y. Ogura, N. Ahmed, S. Kawamura, G. Mikami, S. Okamoto and Y. Izumi, Catal. Sci. Technol., 2014, 4, 1644 DOI: 10.1039/C3CY00959A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements