Issue 5, 2015

Abstraction and addition kinetics of C2H radicals with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPE and hybrid meta-DFT methods

Abstract

Rate coefficients for the reactions of C2H radicals with methane (k1), ethane (k2), propane (k3), ethylene (k4), and propylene (k5) were computed using canonical variational transition state theory (CVT) coupled with hybrid-meta density functional theory (DFT) over a wide range of temperatures from 150 to 5000 K. The quantum chemical tunneling effect was corrected by the small curvature tunneling (SCT) method. The dynamic calculations are performed using the variational transition state theory (VTST) with the interpolated single-point energies (ISPE) method at the CCSD(T)/cc-pVTZ//M06-2X/6-31+G(d,p) level of theory. Intrinsic reaction coordinate (IRC) calculations were performed to verify that the transition states are connected to the reactants and products. The rate coefficients obtained over the studied temperature range yield the following Arrhenius expressions (cm3 molecule−1 s−1): k1 = 4.69 × 10−19T2.44 exp[331/T], k2 = 4.29 × 10−17T2.11 exp[432/T], k3 = 4.81 × 10−17T1.98 exp[697/T], k4 = 7.54 × 10−21T2.96 exp[1942/T], and k5 = 8.04 × 10−23T3.44 exp[3011/T] cm3 molecule−1 s−1. Branching ratio calculation for the reactions of C2H radicals with ethylene and propylene shows that the abstraction reactions are not important at lower temperatures. However, as the temperature increases, abstraction reactions become more important.

Graphical abstract: Abstraction and addition kinetics of C2H radicals with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPE and hybrid meta-DFT methods

Supplementary files

Article information

Article type
Paper
Submitted
15 Oct 2014
Accepted
02 Dec 2014
First published
09 Dec 2014

Phys. Chem. Chem. Phys., 2015,17, 3142-3156

Abstraction and addition kinetics of C2H radicals with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPE and hybrid meta-DFT methods

M. R. Dash and B. Rajakumar, Phys. Chem. Chem. Phys., 2015, 17, 3142 DOI: 10.1039/C4CP04677C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements