Issue 43, 2014

O2 adsorption dependent photoluminescence emission from metal oxide nanoparticles

Abstract

Optical properties of metal oxide nanoparticles are subject to synthesis related defects and impurities. Using photoluminescence spectroscopy and UV diffuse reflectance in conjunction with Auger electron spectroscopic surface analysis we investigated the effect of surface composition and oxygen adsorption on the photoluminescence properties of vapor phase grown ZnO and MgO nanoparticles. On hydroxylated MgO nanoparticles as a reference system, intense photoluminescence features exclusively originate from surface excitons, the radiative deactivation of which results in collisional quenching in an O2 atmosphere. Conversely, on as-prepared ZnO nanoparticles a broad yellow emission feature centered at Em = 2.1 eV exhibits an O2 induced intensity increase. Attributed to oxygen interstitials as recombination centers this enhancement effect originates from adsorbate-induced band bending, which is pertinent to the photoluminescence active region of the nanoparticles. Annealing induced trends in the optical properties of the two prototypical metal oxide nanoparticle systems, ZnO and MgO, are explained by changes in the surface composition and underline that particle surface and interface changes that result from handling and processing of nanoparticles critically affect luminescence.

Graphical abstract: O2 adsorption dependent photoluminescence emission from metal oxide nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2014
Accepted
16 Sep 2014
First published
17 Sep 2014

Phys. Chem. Chem. Phys., 2014,16, 23922-23929

Author version available

O2 adsorption dependent photoluminescence emission from metal oxide nanoparticles

A. R. Gheisi, C. Neygandhi, A. K. Sternig, E. Carrasco, H. Marbach, D. Thomele and O. Diwald, Phys. Chem. Chem. Phys., 2014, 16, 23922 DOI: 10.1039/C4CP03080J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements