Issue 13, 2014

Photodissociation dynamics of propargylene, HCCCH

Abstract

We report a joint theoretical and experimental study on the photodissociation of the C3H2 isomer propargylene, HCCCH, combining velocity map imaging with nonadiabatic trajectory surface hopping calculations. Propargylene loses an H-atom, after laser excitation at around 250 nm, presumably to the T6 state. The photofragment angular distribution exhibits only a very small anisotropy, but the H-atom translational energy distribution extends to high energies and shows an expectation value of 〈fT〉, the fraction of excess energy released as translation, of 48%, outside the range expected for a statistical reaction mechanism. The computations suggest a predissociation in the T4–T6 state and lead to a translational energy distribution and photofragment angular distribution that match the experimentally observed ones very well.

Graphical abstract: Photodissociation dynamics of propargylene, HCCCH

Supplementary files

Article information

Article type
Paper
Submitted
30 Jul 2013
Accepted
06 Feb 2014
First published
07 Feb 2014

Phys. Chem. Chem. Phys., 2014,16, 6294-6302

Author version available

Photodissociation dynamics of propargylene, HCCCH

J. Giegerich, J. Petersen, R. Mitrić and I. Fischer, Phys. Chem. Chem. Phys., 2014, 16, 6294 DOI: 10.1039/C3CP53213E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements