Issue 12, 2014

Determination of biochemical parameters in human serum by near-infrared spectroscopy

Abstract

NIR offers multiple advantages for serum analysis, permitting a fast and direct determination of several parameters simultaneously, with low sample handling and without the need for reagents during the measurement step. The aim of this paper was to provide an evaluation of this technique in a real world scale, for the simultaneous determination of several parameters and based on a considerable number of samples. Direct near infrared (NIR) absorbance measurements were used to determine the concentration of clinical parameters in human serum that are required in routine biochemical tests. Total protein, albumin, total cholesterol, high-density lipoprotein (HDL cholesterol), low-density lipoprotein (LDL cholesterol), and very low-density lipoprotein (VLDL cholesterol), triglycerides, urea and glucose were determined in 447 serum samples obtained randomly from the clinical laboratory of the University Hospital Doctor Peset in Valencia (Spain). NIR spectra from 12 500 to 4000 cm−1 obtained with a 1 mm optical path length were evaluated by using partial least squares regression models (PLS) built from the spectra of samples with known concentrations provided by the hospital. Root mean square error cross-validation (RMSECV) was used for selecting a number of factors, spectral regions and spectral preprocessing considered to build the models, that were evaluated from their prediction capability using the relative root mean square error of prediction (RRMSEP) of a series of around 30 independent samples, not used for calibration. For some analytes such as total protein, albumin, total cholesterol and triglycerides, errors obtained were 2.3, 4.4, 5.1, and 6.2% respectively, evidencing that the proposed methodology could compete with the enzymatic reference methodologies. However in the case of urea, glucose, HDL and LDL, average errors obtained were 16.0, 16.2, 18.0 and 11.0% respectively, and therefore the NIR methodology proposed is limited as a screening tool. With the use of a considerable number of samples for calibration, this study confirms that the proposed green and cost-effective methodology is ready for scaling up from the bench to the real world.

Graphical abstract: Determination of biochemical parameters in human serum by near-infrared spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
10 Dec 2013
Accepted
27 Feb 2014
First published
06 Mar 2014

Anal. Methods, 2014,6, 3982-3989

Determination of biochemical parameters in human serum by near-infrared spectroscopy

J. L. García-García, D. Pérez-Guaita, J. Ventura-Gayete, S. Garrigues and M. de la Guardia, Anal. Methods, 2014, 6, 3982 DOI: 10.1039/C3AY42198H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements