Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method
Abstract
Single-crystal trigonal tellurium nanowires and nanotubes were synthesized using a facile, efficient, and relatively green solution phase method with ethylene glycol as solvent and an alternative reducing agent in the presence of NaOH. Large-scale production of slender nanowires and hollow nanotubes with average diameters of 72 and 240 nm, respectively, was achieved by increasing the temperature from 170 °C to 200 °C. Tellurium morphology from nanowires to nanotubes was also controlled by adjusting the NaOH dosage. Scanning electron micrographs show that low temperature or NaOH insufficiency promotes the formation of slender nanowires but counteracts the synthesis of tellurium nanotubes. Detailed reaction equations based on the NaOH dosage were obtained. Preferential growth orientation of [001] was observed in the nanowire and nanotube through high-resolution transmission electron microscopy. Further formation mechanisms dependent on time were systematically studied.