Issue 43, 2013

High-throughput screening of small-molecule adsorption in MOF

Abstract

Using high-throughput screening coupled with state-of-the-art van der Waals density functional theory, we investigate the adsorption properties of four important molecules, H2, CO2, CH4, and H2O in MOF-74-M with M = Be, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Nb, Ru, Rh, Pd, La, W, Os, Ir, and Pt. We show that high-throughput techniques can aid in speeding up the development and refinement of effective materials for hydrogen storage, carbon capture, and gas separation. The exploration of the configurational adsorption space allows us to extract crucial information concerning, for example, the competition of water with CO2 for the adsorption binding sites. We find that only a few noble metals—Rh, Pd, Os, Ir, and Pt—favor the adsorption of CO2 and hence are potential candidates for effective carbon-capture materials. Our findings further reveal significant differences in the binding characteristics of H2, CO2, CH4, and H2O within the MOF structure, indicating that molecular blends can be successfully separated by these nano-porous materials.

Graphical abstract: High-throughput screening of small-molecule adsorption in MOF

Supplementary files

Article information

Article type
Paper
Submitted
20 Jun 2013
Accepted
06 Sep 2013
First published
09 Sep 2013

J. Mater. Chem. A, 2013,1, 13597-13604

High-throughput screening of small-molecule adsorption in MOF

P. Canepa, C. A. Arter, E. M. Conwill, D. H. Johnson, B. A. Shoemaker, K. Z. Soliman and T. Thonhauser, J. Mater. Chem. A, 2013, 1, 13597 DOI: 10.1039/C3TA12395B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements