Issue 3, 2013

High performance hybrid carbon fillers/binary–polymer nanocomposites with remarkably enhanced positive temperature coefficient effect of resistance

Abstract

Aiming to enhance the positive temperature coefficient (PTC) effect of resistance, immiscible polymer blends [ultra-high molecular weight polyethylene (UHMWPE)/polyvinylidene fluoride (PVDF) = 4 : 1] based composites containing hybrid fillers [carbon nanotubes (CNTs) and carbon black (CB)] were explored. The conductive fillers were premixed with UHMWPE by melt-mixing and then PVDF was introduced into the blends. The preferential distribution of conductive fillers in the UHMWPE phase was desirably observed. Besides decreasing the electrical resistivity of the single UHMWPE based PTC materials, the addition of PVDF with much higher melting point could improve the temperature range of the PTC materials, which is important for their potential applications. A remarkable synergetic effect arising from the combination of CB and CNTs with different geometric structures and aspect ratios on improving the PTC behavior was demonstrated. By introducing 0.5 vol% CNTs into the 4 vol% CB filled UHMWPE0.8–PVDF0.2 composites, the initial resistivity decreased by about two orders of magnitude and the PTC intensity (PTCI) increased by about 30%. Owing to the 3-dimensional conductive networks provided by tube-shaped CNTs and spherical CB and the high viscosity of the UHMWPE matrix, favorable PTC repeatability was also achieved.

Graphical abstract: High performance hybrid carbon fillers/binary–polymer nanocomposites with remarkably enhanced positive temperature coefficient effect of resistance

Article information

Article type
Paper
Submitted
25 Sep 2012
Accepted
24 Oct 2012
First published
25 Oct 2012

J. Mater. Chem. A, 2013,1, 843-851

High performance hybrid carbon fillers/binary–polymer nanocomposites with remarkably enhanced positive temperature coefficient effect of resistance

J. Zha, W. Li, R. Liao, J. Bai and Z. Dang, J. Mater. Chem. A, 2013, 1, 843 DOI: 10.1039/C2TA00429A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements