Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The hybrid hydroxyapatite (HAP) hollow microparticles were achieved by combining HAP hollow microparticles and chitosan/sodium alginate (CHI/SA) multilayers via the layer-by-layer (LbL) self-assembly technique. Doxorubicin hydrochloride (DOX) loading and release investigation indicated that the prepared hybrid CHI/SA/HAP hollow microparticles with a hollow hydroxyapatite core and polymer multilayer shell exhibited high drug loading efficiency, sustained and pH-dependent drug release properties. The drug loading efficiency of CHI/SA/HAP hollow microparticles was 90.0%, which was much higher than that of solid HAP microparticles (39.6%). Compared to the solid HAP microparticles having a higher amount of released DOX over the initial 1 h (about 44.4% of total released drug over 24 h), CHI/SA/HAP hollow microparticles displayed sustained release properties with the value of only 28.4% with the same treatment. Moreover, the drug release of hybrid CHI/SA/HAP hollow microparticles was pH-dependent because of the different electrostatic interaction in the CHI/SA multilayers at different pH values and the dissolution of HAP hollow core under acidic conditions. The results indicate that the hybrid CHI/SA/HAP hollow microparticles show great potential as a novel drug carrier for controllable drug delivery.

Graphical abstract: Hollow hybrid hydroxyapatite microparticles with sustained and pH-responsive drug delivery properties

Page: ^ Top