The degenerate Payne rearrangement of the 2,3-epoxypropoxide anion in the gas phase. A joint theoretical and experimental study

(Note: The full text of this document is currently only available in the PDF Version )

Suresh Dua, Mark S. Taylor, Mark A. Buntine and John H. Bowie


Abstract

Ab initio calculations [at G2 level] indicate that an energised 2,3-epoxypropoxide anion should undergo two competing cyclisation processes, i.e. (i) the degenerate Payne rearrangement (attack of O at the more substituted carbon of the ethylene oxide ring, to open that ring, and to form another ethylene oxide ring) (the computed barrier to the transition state is 45 kJ mol–1), and (ii) attack of O at the less substituted carbon of the ethylene oxide ring. This cyclisation forms a more stable oxetane species, but the barrier (from the reactant to transition state) is 122 kJ mol–1. Experimental results are in accord with this prediction. The major fragmentation of energised 2,3-epoxypropoxide is loss of CH2O to yield a product anion identified as the acetaldehyde enolate anion (CH2CHO). This cleavage can be used as a probe to investigate the relative extents of the two possible cyclisation processes. Comparison of the spectra of the 2,3-epoxypropoxide anion and the (M – H) ion from 3-hydroxyoxetane, together with studies of labelled (2H), and doubly labelled (2H, 18O) analogues, demonstrate (a) that 40% of CH2O loss occurs by simple cleavage before any rearrangement of the 2,3-epoxypropoxide anion , (b) 25% of CH2O loss follows Payne equilibration, and (iii) 35% of CH2O loss occurs following equilibration of the Payne product and an oxetane intermediate.


References

  1. G. B. Payne, J. Am. Chem. Soc., 1962, 27, 3819 CAS.
  2. C. H. Behrens, S. Y. Ko, B. Sharpless and F. J. Walker, J. Org. Chem., 1985, 50, 5687 CrossRef CAS.
  3. C. Bonini, C. Guikiano, R. Righi and L. Rossi, Tetrahedron Lett., 1992, 7429 CrossRef CAS.
  4. GAUSSIAN94, Revision C3, M. J. Frish, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Latham, V. H. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. V. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995.
  5. S. Okada, Y. Abe, S. Tanaguchi and S. Yamabe, J. Am. Chem. Soc., 1987, 109, 295 CrossRef CAS.
  6. K. M. Downard, J. C. Sheldon and J. H. Bowie, Int. J. Mass Spectrom. Ion. Proc., 1988, 86, 217 CrossRef CAS.
  7. R. G. Cooks, J. H. Beynon, R. M. Caprioli and G. R. Lester, Metastable Ions, Elsevier, New York, 1973, pp. 57–70 Search PubMed.
  8. C. H. DePuy, V. M. Bierbaum and R. Damrauer, J. Am. Chem. Soc., 1984, 106, 4051 CrossRef CAS.
  9. J. W. Benson, Thermochemical Kinetics, Wiley, New York, 1967 Search PubMed; S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, Gas Phase Ion and Thermal Thermochemistry, J. Phys. Chem. Ref. Data 17, 1988, Suppl. 1 (Computer version) Search PubMed; G. Aylward and T. Findlay, S.I. Chemical Data, Wiley, Brisbane, New York, 3rd ed., 1994 Search PubMed; M. J. Travers and G. B. Ellison, Experimentally Derived Electron Affinities to 1989, Department of Chemistry and Biochemistry, University of Colorado at Boulder Search PubMed.
  10. M. J. S. Dewar, E. G. Zoeblish and E. F. Healy, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  11. M. J. Clarke and K. A. Holbrook, J. Chem. Soc., Faraday Trans. 1, 1977, 73, 890 RSC.
  12. VG ZAB 2HF, VG Analytical, Manchester, UK.
  13. M. B. Stringer, J. L. Holmes and J. H. Bowie, J. Am. Chem. Soc., 1986, 108, 3888 CrossRef CAS.
  14. J. H. Bowie and T. Blumenthal, J. Am. Chem. Soc., 1995, 97, 2959; I. Howe, J. H. Bowie, J. E. Szulejko and J. H. Beynon, Int. J. Mass Spectrom. Ion. Phys., 1980, 34, 99 CrossRef CAS.
  15. L. A. Curtiss, K. Raghavachari, G. W. Trucks and J. A. Pople, J. Chem. Phys., 1991, 94, 7221 CrossRef CAS.
  16. L. A. Curtiss, K. Raghavachari and J. A. Pople, J. Chem. Phys., 1993, 98, 1293 CrossRef CAS.
  17. K. Baum, P. T. Berkowitz, V. Grakanskas and T. G. Archibald, J. Org. Chem., 1983, 48, 2953 CrossRef CAS.
  18. J. A. Wojtowicz, R. J. Polak and J. A. Zaslowsky, J. Org. Chem., 1971, 36, 2232 CrossRef CAS.
  19. B. Borhan, S. Nazarian, E. M. Stocking, B. D. Hammock and M. J. Kurth, J. Org. Chem., 1994, 59, 4316 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.