Refaat B.
Hamed
*ab,
Luc
Henry
a,
J. Ruben
Gomez-Castellanos
a,
Amina
Asghar
a,
Jürgen
Brem
a,
Timothy D. W.
Claridge
a and
Christopher J.
Schofield
*a
aDepartment of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK. E-mail: christopher.schofield@chem.ox.ac.uk; Fax: +44 (0)1865275674; Tel: +44 (0)1865275625
bDepartment of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt, (on leave). E-mail: refaat.hamed@outlook.com
First published on 3rd October 2013
The trisubstituted enolate- and C–C bond-forming capacities of engineered carboxymethylproline synthases CMPSs are coupled with the malonyl-CoA synthetase MatB to enable stereoselective preparation of 5- and 6-membered N-heterocycles functionalised with alkyl-substituted carboxymethyl side chains, starting from achiral alkyl-substituted malonic acids and L-amino acid semialdehydes. The results illustrate the biocatalytic utility of crotonases in tandem enzyme-catalysed reactions for stereoselective synthesis.
The carboxymethylproline synthases (CMPSs, CarB from Pectobacterium carotovorum2–5 and ThnE from Streptomyces cattleya6–8) catalyse an N-heterocycle ring-forming step in carbapenem biosynthesis and are members of the crotonase superfamily.9,10 CarB and ThnE catalyse reaction of malonyl-CoA 1 with an equilibrating mixture of L-glutamate semialdehyde/5-hydroxyproline/pyrroline-5-carboxylate (collectively L-GHP, 2) to give (2S,5S)-carboxymethylproline (t-CMP) 3 (Fig. 1A).
![]() | ||
Fig. 1 Engineering carboxymethylproline synthases to accept malonyl-CoA 1 analogues with bulky side chains. (A) CarB and ThnE catalysed synthesis of (2S,5S)-carboxymethylproline 3;7,10 (B) A view from a CarB structure2 with (2R)-methylmalonyl-CoA 4 and L-pyrroline-5-carboxylate 2 (L-P5C) modeled in the active site. The Trp79 residue, the surface of which is shown in orange, is part of a hydrophobic face in the active site; substitution of Trp79 for Phe- or Ala-residues increases the capacity of CarB to accommodate bulkier substituents at the malonyl-CoA C-2 position (asterisked). |
The mechanisms of catalysis of most crotonases, including CarB and ThnE, are proposed to proceed via enolate intermediates, usually generated by decarboxylation of (a derivative of) 1. The enolate intermediates are stabilised by a conserved oxyanion hole (OAH), which is formed in the case of CarB and ThnE by residues Gly62CarB/Gly107ThnE and Met108CarB/Val153ThnE (Fig. 1). C–C bond formation can then proceed via reaction of the enolate intermediate with the imine form of 2 to give the t-CMP-CoA thioester, which is then hydrolysed to give 3 and coenzyme A (CoASH) (Fig. 1A).4,5
Despite its central importance in asymmetric synthesis, the stereoselective alkylation of enolates has been relatively under-explored for biocatalytic C–C bond formation with notable exceptions including the use of engineered aldolases and catalytic antibodies.11–14 We have reported that (engineered) CMPSs accept L-GHP analogues to give 6- and 7-membered carboxymethyl-N-heterocycles.15 CMPSs also accept methylated derivatives of L-GHP to give 5-carboxymethylproline derivatives functionalised at C-2, C-3, C-4, or C-5 of the proline ring, including products with a quaternary center (at C-2 or C-5) in a stereoselective fashion.16 Active site CMPS variants enabled the stereoselective alkylation of enolates generated from methylmalonyl-CoA 4 and ethylmalonyl-CoA 5.17 These findings stimulated us to investigate other C-2 alkylmalonyl-CoA derivatives as CMPS substrates, and whether the stereoselectivity of CMPS catalysis could be improved.
We report that CMPS catalysis can be coupled to that of malonyl-CoA synthetase (MatB) or crotonyl-CoA carboxylase reductase (Ccr) for the stereoselective preparation of functionalised prolines and pipecolic acids. The results illustrate the utility of coupling crotonases with other enzymes for stereoselective synthesis. With appropriate optimization, the reactions may be useful in cell-based contexts for the preparation of functionalised heterocycles for use in pharmaceutical research.
![]() | ||
Fig. 2 Coupling carboxymethylproline synthases with alkylmalonyl-CoA forming enzymes. (A) CarB catalyses formation of a ∼1![]() ![]() |
We have developed CMPS variants that selectively convert (2S)-4/5 or (2R)-4/5 to (6R)-6/7 and (6S)-6/7, respectively.17 The ratio of (6R)-:
(6S)-6/7 epimers observed depends on factors including the ‘intrinsic’ selectivity of the CMPS variant, the overall extent of reaction (as the concentration of a specific C-2 epimer of 4/5 is diminished, the rate of conversion of the other is enhanced) and the rate of non-enzymatic interconversion between the (2S)- and (2R)-4/5 epimers (the faster the equilibration, the more CMPS-variant catalysed conversion of the favoured CMPS substrate is observed).17
(2S)-5 can be produced, as a single (>90%) (2S)-epimer by reaction of crotonyl-CoA 8, CO2 and NADPH as catalysed by crotonyl-CoA carboxylase reductase (Ccr) (Fig. 2B).18,19 We therefore prepared Ccr,19 and used it to produce (2S)-5 or (2S)-4 from crotonyl-CoA(8) or acryloyl-CoA 9,18 respectively. When these products were then separately incubated with 2 and an appropriate CarB W79-based variant (i.e. CarB W79F or CarB W79A), we observed conversion of (2S)-5 or (2S)-4 to (6R)-7 or (6R)-6, respectively (Fig. 2B and 3).17 However, the CarB W79F/A variants convert (2R)-4/5 to (6S)-6/7 at a faster rate than converting (2S)-4/5 to (6R)-6/7 (Fig. 2B).17 We were therefore interested in selectively preparing the (2R)-alkylmalonyl-CoA epimers,17 and incubating them with CMPSs. We were also keen to extend the range of C6/C7 side chains tested with CMPS variants, which had been limited by the availability of malonyl coenzyme A derivatives.
![]() | ||
Fig. 3 Stereoselective alkylation of L-GHP 2 employing enzyme pairs. The ion extracted LC-MS chromatograms (positive ionization mode) display the selectivities of Ccr/CarB W79F and MatB/CarB W79F for the (6R)-6/7 or (6S)-6/7 products, respectively. |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Entry | Catalyst | Substrate | Product | d.r.a (R![]() ![]() |
Yieldb (%) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A (R) | B (n) | n | R | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a d.r.: diastereomeric ratio of epimers at C-6 or C-7 of 5- or 6-membered ring products, respectively. b Diastereomeric ratios and (isolated) yields were calculated as reported.15–17 c HFH: 4,4,5,5,6,6,6-heptafluorohexyl (HFH). 2,2-Dimethylmalonic acid (12) was also converted to the corresponding C-6 dimethyl-t-CMP derivative. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | CarB wildtype | Methyl 10 | 1 | 1 | Methyl, (6S)-6 | <1![]() ![]() |
30 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | CarB W79F | Methyl 10 | 1 | 1 | Methyl, (6S)-6 | <1![]() ![]() |
32 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | CarB W79A | Methyl 10 | 1 | 1 | Methyl, (6S)-6 | <1![]() ![]() |
25 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | CarB wildtype | Ethyl 11 | 1 | 1 | Ethyl, (6S)-7 | <1![]() ![]() |
3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | CarB W79F | Ethyl 11 | 1 | 1 | Ethyl, (6S)-7 | <1![]() ![]() |
17 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | CarB W79A | Ethyl 11 | 1 | 1 | Ethyl, (6S)-7 | <1![]() ![]() |
19 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | CarB W79F | Allyl 13 | 1 | 1 | Allyl, (6S)-28 | <1![]() ![]() |
14 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | CarB W79A | Allyl 13 | 1 | 1 | Allyl, (6S)-28 | <1![]() ![]() |
13 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | CarB W79F | Propyl 14 | 1 | 1 | Propyl, (6S)-29 | <1![]() ![]() |
19 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | CarB W79A | Propyl 14 | 1 | 1 | Propyl, (6S)-29 | <1![]() ![]() |
30 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | CarB W79A | Butyl 15 | 1 | 1 | Butyl, (6S)-30 | <1![]() ![]() |
9 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | CarB W79A | Isobutyl 16 | 1 | 1 | Isobutyl, (6S)-31 | <1![]() ![]() |
9 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13 | CarB W79A | Pentyl 17 | 1 | 1 | Pentyl, (6S)-32 | <1![]() ![]() |
27 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
14 | CarB W79A | 2-Methylbutyl 18 | 1 | 1 | 2-Methylbutyl, (6S)-33 | <1![]() ![]() |
6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15 | CarB W79A | Isopentyl 19 | 1 | 1 | Isopentyl, (6S)-34 | <1![]() ![]() |
32 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
16 | CarB W79A | Isoprenyl 20 | 1 | 1 | Isoprenyl, (6S)-35 | <1![]() ![]() |
36 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
17 | CarB W79A | Hexyl 21 | 1 | 1 | Hexyl, (6S)-36 | <1![]() ![]() |
30 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
18 | CarB W79A | HFHc22 | 1 | 1 | HFH, (6S)-37 | <1![]() ![]() |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
19 | CarB W79A | Heptyl 23 | 1 | 1 | Heptyl, (6S)-38 | <1![]() ![]() |
10 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
20 | CarB W79A | Octyl 24 | 1 | 1 | Octyl, (6S)-39 | <1![]() ![]() |
9 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
21 | CarB wildtype | Methyl 10 | 2 | 2 | Methyl, (7S)-41 | <1![]() ![]() |
3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
22 | CarB W79F | Methyl 10 | 2 | 2 | Methyl, (7S)-41 | <1![]() ![]() |
8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
23 | CarB W79A | Methyl 10 | 2 | 2 | Methyl, (7S)-41 | <1![]() ![]() |
6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
24 | CarB W79A | Ethyl 11 | 2 | 2 | Ethyl, (7S)-42 | <1![]() ![]() |
4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
25 | CarB W79F | Ethyl 11 | 2 | 2 | Ethyl, (7S)-42 | <1![]() ![]() |
6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
26 | CarB W79A | Allyl 13 | 2 | 2 | Allyl, (7S)-43 | <1![]() ![]() |
6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
27 | CarB W79A | Propyl 14 | 2 | 2 | Propyl, (7S)-44 | <1![]() ![]() |
5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
28 | CarB W79A | Butyl 15 | 2 | 2 | Butyl, (7S)-45 | <1![]() ![]() |
3 |
We initially tested the MatB/CMPS pair with 10 and 11 (Table 1) as well as 2,2-dimethylmalonic acid 12 (results not shown). In each case, the MatB/wildtype CarB coupled reaction resulted in the production of the anticipated t-CMP derivative, as revealed by LC-MS analyses, in yields comparable to those resulting from direct incubation of the corresponding synthetic derivatives of 1 and 2 with wildtype CarB.17 The observed C-6 epimeric ratio in the case of both 10 and 11 reactions was ≥99:
1 in favour of (6S)-6/7 (Table 1: entries 1 and 4). The MatB/CarB W79F/A coupled reactions were also selective for production of the (6S)-epimer of 6/7 and the isolated yields were either similar (Table 1: entries 2 and 3) or higher (Table 1: entries 5 and 6) than those for wildtype CarB.
We then tested a series of C-2 mono-alkylated malonic acid derivatives ranging from those with a 3 carbon side-chain to derivatives with a 10 carbon side-chain, with varying saturation and/or substitution (Fig. S1,†Table 1). Analytical LC-MS assays revealed that the MatB/CarB W79A pair converts malonic acids with the following C-2 side chains: allyl (13), n-propyl (14), n-butyl (15), isobutyl (16), n-pentyl (17), 2-methylbutyl (18), isopentyl (19), isoprenyl (20), n-hexyl (21), 4,4,5,5,6,6,6-heptafluorohexyl (22), n-heptyl (23), and n-octyl (24) to form the corresponding 6-alkyl-5-carboxymethylproline derivatives (28–39) (Fig. S2,†Table 1). The C-2 malonic acid derivative with an n-decyl side chain (25) was a poor substrate for the coupled MatB/CarB W79A-catalysed reaction (the yield of the t-CMP (26) derivative was ∼6% of that for 6-n-octyl-t-CMP (39), Table 1, entry 20).
Scale-up and NMR of the LC-MS purified MatB/CarB W79A-catalysed products revealed that a single detectable epimer of 6-alkyl-t-CMP with the (5S,6S)-stereochemistry was formed with isolated yields from 5% to 36% (Table 1: entries 8, 10–20). (There is likely scope for optimization of the small-scale reactions, including in cells) LC-MS analyses of the reaction catalysed by MatB/wildtype CarB pair did not result in observation of detectable quantities of the alkylated products that were observed with the MatB/CarB W79A reactions. In the case of the MatB/CarB W79F reactions, we only observed formation of derivatives with allyl and n-propyl side-chains, at comparable yields to those of the MatB/CarB W79A-catalysed reaction (Table 1: entries 7, 9). The reduced promiscuity and/or efficiency for wildtype CarB and CarB W79F compared to CarB W79A is consistent with the predicted reduced steric demand of the latter (Fig. 1B, Table 1).
The MatB/CarB pair catalysed production of 3 from 2, using pantetheine (46) or N-acetyl cysteamine (47), substituting for CoASH, occurs in ∼20% or ∼15%, respectively, of the yields obtained with CoASH (Fig. S6†). When we tested C-2 alkylated derivatives with 46, in addition to the t-CMP derivative, we observed two previously undetected (by LC-MS, Fig. S5 and S7†) species, corresponding to the methyl ester- and pantetheinyl-t-CMP derivatives. The methyl ester is presumably produced in the methanol quenching step. In the case of the 2-isoprenyl malonic acid (20)/MatB/CarB-W79A system (Fig. 4), the assignment of the methyl ester (48) was confirmed by NMR (during isolation, the assigned pantetheinyl thioester (49) underwent hydrolysis to give (35)). Thus, in principle it is possible to use MatB/CMPSs for the regioselective production of t-CMP esters. These observations are consistent with the proposed intermediacy of an enzyme-bound t-CMP-CoA thioester (50) in CarB catalysis.4,5 It is possible that the observation (by LC-MS) of the thioester (49)/methyl ester (48) in the case of the C-2 substituted alkyl malonic acid derivatives, reflects steric hindrance in the hydrolysis step, resulting in release of the non-optimal pantetheinyl-thioester (49).
![]() | ||
Fig. 4 Products from the incubation of C-2 isoprenylmalonic acid (20) with MatB/CarB W79A using pantetheine as a replacement for coenzyme A. |
![]() | ||
Fig. 5 Malonyl-CoA analogues as CMPS substrates. |
Experimental details and spectroscopic characterisations are given in the ESI.†
We thank the Biotechnology and Biological Sciences Research Council, Berrow Foundation (LH) and CONACyT and FIDERH (Mexico, RGC) for funding. The MatB expression plasmid was kindly provided by Dr A. T. Keatinge-Clay. The expression plasmids of the CoA biosynthesis enzymes were kindly provided by Dr M. Tosin. We thank Sven Warhaut for his help during the course of the work.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c3ob41525b |
This journal is © The Royal Society of Chemistry 2013 |