Teng-Yue
Jian
,
Xiang-Yu
Chen
,
Li-Hui
Sun
and
Song
Ye
*
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: songye@iccas.ac.cn; Fax: (+86) 10 6255 4449; Tel: (+86) 10 6264 1156
First published on 16th October 2012
The N-heterocyclic carbene-catalyzed [4 + 2] cyclization of ketenes and 3-aroylcoumarins has been developed to give the corresponding dihydrocoumarin-fused multisubstituted dihydropyranones in high yield with good diastereoselectivity and high enantioselectivity.
Since Staudinger's discovery of ketenes in the early 1900s,4 their cycloaddition reactions have become a powerful methodology for the construction of cyclic compounds.5,6 Over the past decades, N-heterocyclic carbene (NHC) catalysis has been very successful for a variety of reactions.7 We,8 independently with Smith et al.,9 demonstrated that N-heterocyclic carbenes (NHCs) were efficient catalysts for the formal cycloaddition reactions of ketenes. In 2008 and later, we reported the NHC-catalyzed enantioselective [4 + 2] cycloaddition of ketenes with activated enones, giving the corresponding dihydropyranones in good yield with high enantioselectivity.10 We envisaged that 3-aroylcoumarin may act as the oxodiene for the NHC-catalyzed [4 + 2] cycloaddition of ketenes, and thus provide a facile enantioselective access to coumarin-fused dihydropyranones.
:
1 dr in the presence of 10 mol% NHC 4a′,8a,11 generated from L-pyroglutamic acid derived triazolium salt 4a and 20 mol% of Cs2CO3 (entry 1). NHC 4b′ with a less bulky TMS group and NHC 4c′ with a bulky N-(2-isopropyl)phenyl group resulted in better yields but decreased enantioselectivity (entries 2 and 3). NHC 4d′ with a free hydroxyl group12 led to a reversed but high enantioselectivity (80% ee) for this reaction (entry 4). Tetracyclic NHC 5′, derived from aminoindanol, also worked well in the reaction, giving the cycloadduct 3aa in 88% yield with 67% ee and 8
:
1 dr (entry 5).
|
|
|||||||
|---|---|---|---|---|---|---|---|
| Entry | 4–5 (X)a | Cs2CO3 (Y) | Solvent | T (°C) | Yieldb (%) | eec (%) | dre |
| a NHC 4′–5′ was generated from its precursor 4–5 (10–12 mol%) in the presence of Cs2CO3 (10–20 mol%) in the noted solvent at room temperature for 30 min. b Isolated yield of pure cis-3aa. c Determined by HPLC. d ent-3aa was isolated as the major enantiomer for entries 1–3. e Determined by 1H NMR (300 MHz) of the reaction mixture. | |||||||
| 1 | 4a (10) | 20 | DCM | rt | 49 | 29d | 8 : 1 |
| 2 | 4b (10) | 20 | DCM | rt | 77 | 6d | 6 : 1 |
| 3 | 4c (10) | 20 | DCM | rt | 82 | 18d | 7 : 1 |
| 4 | 4d (10) | 20 | DCM | rt | 81 | 80 | 10 : 1 |
| 5 | 5 (10) | 20 | DCM | rt | 88 | 67 | 8 : 1 |
| 6 | 4d (10) | 20 | THF | rt | 67 | 10 | 8 : 1 |
| 7 | 4d (10) | 20 | Toluene | rt | 89 | 87 | 8 : 1 |
| 8 | 4d (10) | 20 | Toluene | 0 °C | 91 | 83 | 10 : 1 |
| 9 | 4d (12) | 10 | Toluene | 0 °C | 87 | 91 | 12 : 1 |
Solvent screening revealed that the reaction performed better in toluene than in DCM or THF in terms of enantioselectivity (87% ee vs. 80% ee or 10% ee, entries 4, 6–7). Lowering the reaction temperature to 0 °C benefits the yield but with decreased enantioselectivity (entry 8). Careful examination revealed that excess Cs2CO3 could also promote the reaction, giving the cycloadduct as a racemate. Thus the reaction employing 10 mol% of Cs2CO3 and 12 mol% triazolium NHC precursor 4d resulted in an improved enantioselectivity (91% ee) and diastereoselectivity (12
:
1 dr) (entry 9).
With the optimized reaction condition in hand, the reaction scope was then briefly investigated (Table 2). It was found that aryl(alkyl)ketenes with ethyl, methyl and n-propyl all worked well to give the corresponding cycloadduct (3aa, 3ba and 3ca) in high yield with high enantioselectivity and diastereoselectivity. However, ketenes with a bulky isobutyl group resulted in decreased yield and enantioselectivity (3da). Electron-withdrawing substituents (4-Br, 4-ClC6H4) are well tolerated, giving cycloadducts (3ea and 3fa) in high yield with high enantioselectivity, while an electron-donating group (4-MeC6H4) led to some loss of yield and enantioselectivity (3ga). It should be noted that reaction of ketene containing an o-chlorophenyl group gave only a trace of cycloaddduct (3ha). Interestingly, ketene 1i derived from cycloheptanecarbonyl chloride worked very well, giving the desired cycloadduct 3ia in 83% yield with 98% ee, while benzyl(ethyl)ketene (1j) resulted in decreased yield and low diastereo- and enantioselectivity (3ja).
|
Several 3-aroylcoumarins were also tested for the reaction (Table 3). Both an electron-donating group (4-MeC6H4) and electron-withdrawing groups (4-BrC6H4, 4-ClC6H4) on the aroyl are tolerated, giving the desired cycloadduct in high yield with good diastereo- and enantioselectivity (3ab, 3ac and 3ad). However, aroyl groups with meta- or ortho-substituents (3-ClC6H4, 2-ClC6H4) led to decreased enantioselectivity albeit in high yield and good to high diastereoselectivity (3ae and 3af). 6-Halocoumarin derivatives (X = Cl, Br) also worked as well as the parent one (3ag and 3ah).
The absolute stereochemistry of cycloadduct (+)-3fa was unambiguous established by the X-ray analysis† of its crystal (Fig. 1),13 and that of all other cycloadducts is proposed by analogy. The crystal of (+)-3fa was prepared from a solution in DCM–ether (90
:
10) with a trace of petroleum ether.
![]() | ||
| Fig. 1 X-ray structure of cycloadduct (+)-3fa. | ||
Based on the dramatic effect of the free hydroxyl group of the NHC catalyst, and the diastereo- and enantioselectivity observed,14 a likely transition state is proposed as in Fig. 2. The enolate generated by addition of the NHC to ketene favors its Z-isomer, which minimizes the steric repulsion. The hydrogen-bonding between the hydroxy group of the NHC–ketene adduct and aroyl group of the coumarin derivative directs the facial selectivity. The endo transition state of the Diels–Alder reaction is favored and results in the cis-cycloadduct observed.
![]() | ||
| Fig. 2 Proposed model for stereochemical outcome. | ||
:
100) to give the desired product.
Racemic samples for the standard of chiral HPLC spectra were prepared using 2-phenyl-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazolium chloride as the catalyst.
:
1); [α]25D +158.4 (c 1.2, CHCl3), HPLC analysis: 91% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 90
:
10, 1.0 mL min−1, 254 nm, 16.3 min (major), 25.9 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.48–7.42 (m, 3H), 7.40–7.37 (m, 4H), 7.25–7.24 (m, 1H), 7.19–7.02 (m, 3H), 7.04 (d, J = 8.1 Hz, 1H), 6.73 (dd, J = 6.6 Hz, J = 1.8 Hz, 2H), 4.67 (s, 1H), 2.40–2.32 (m, 2H), 1.20 (t, J = 7.2 Hz, 3H). 13C NMR (300 MHz, CDCl3) δ 170.0, 164.0, 158.1, 151.7, 136.5, 131.6, 131.4, 130.0, 129.9, 129.4, 128.9, 128.3, 127.9, 126.0, 124.1, 117.1, 116.8, 104.1, 56.5, 40.2, 29.6, 10.2. IR (KBr) ν 3044, 1951, 1774, 1612, 1321, 785, 515, 468. HRMS (EI) m/z: M+ Calc. for C26H20O4, 396.1362, Found 396.1366.
:
1); [α]25D +167.3 (c 1.0, CHCl3), HPLC analysis: 87% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 90
:
10, 1.0 mL min−1, 254 nm, 12.3 min (major), 19.4 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.49–7.45 (m, 1H), 7.42–7.27 (m, 6H), 7.25–7.21 (m, 1H), 7.20–7.17 (m, 3H), 7.0–7.06 (m, 1H), 6.81–6.77 (m, 2H), 4.53 (s, 1H), 1.94 (s, 3H). 13C NMR (300 MHz, CDCl3) δ 170.8, 164.2, 157.9, 151.5, 137.4, 131.5, 131.3, 130.1, 129.8, 129.4, 129.0, 128.3, 127.9, 125.5, 124.1, 117.7, 116.7, 104.5, 52.0, 42.6, 25.0. IR (KBr) ν 3024, 1855, 1774, 1642, 1221, 775, 550, 468. HRMS (EI) m/z: M+ Calc. for C25H18O4, 382.1205, Found 382.1212.
:
1); [α]25D +241 (c 1.5, CHCl3), HPLC analysis: 91% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 85
:
15, 1.0 mL min−1, 254 nm, 11.5 min (major), 15.9 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.54–7.40 (m, 7H), 7.38–7.15 (m, 4H), 7.05 (d, J = 8.1 Hz, 1H), 6.74 (d, J = 6.0 Hz, 2H), 4.66 (s, 1H), 2.35 (t, J = 8.7 Hz, 2H), 1.96–1.86 (m, 1H), 1.36–1.23 (m, 1H), 1.02 (t, J = 7.2 Hz, 3H). 13C NMR (300 MHz, CDCl3) δ 170.1, 164.0, 158.1, 151.6, 136.6, 131.6, 131.4, 130.0, 129.8, 129.3, 128.8, 128.2, 127.9, 125.9, 124.1, 117.7, 116.8, 104.1, 56.1, 40.5, 38.9, 18.7, 14.4. IR (KBr) ν 3030, 1961, 1834, 1644, 1331, 765, 545, 455. HRMS (EI) m/z: M+ Calc. for C27H22O4, 410.1518, Found 410.1523.
:
1); [α]25D +241.3 (c 1.0, CHCl3), HPLC analysis: 70% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 85
:
15, 1.0 mL min−1, 254 nm, 10.2 min (major), 15.5 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.47–7.35 (m, 7H), 7.26–7.20 (m, 4H), 7.10 (d, J = 8.7 Hz, 1H), 6.94–6.91 (m, 2H), 4.58 (s, 1H), 2.30–2.17 (m, 2H), 2.04–1.95 (m, 1H), 1.09 (d, J = 7.5 Hz, 3H), 0.33 (d, J = 6.6 Hz, 3H). 13C NMR (300 MHz, CDCl3) δ 170.4, 164.0, 158.5, 151.5, 136.1, 131.5, 131.3, 130.1, 130.0, 129.7, 128.9, 128.4, 127.9, 126.6, 124.0, 117.7, 117.2, 104.1, 54.8, 45.7, 42.3, 25.9, 25.5, 23.6. IR (KBr) ν 3030, 1871, 1674, 1512, 1221, 780, 535. HRMS (EI) m/z: M+ Calc. for C28H24O4, 424.1675, Found 424.1682.
:
1); [α]25D +231.4 (c 1.5, CHCl3), HPLC analysis: 91% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 90
:
10, 1.0 mL min−1, 254 nm, 15.6 min (major), 18.9 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.55–7.38 (m, 7H), 7.32–7.20 (m, 3H), 7.05 (d, J = 7.8 Hz, 1H), 6.61 (d, J = 5.7 Hz, 2H), 4.67 (s, 1H), 2.37–2.29 (m, 2H), 1.19 (t, J = 6.9 Hz, 3H). 13C NMR (300 MHz, CDCl3) δ 169.5, 164.0, 158.0, 151.65, 135.6, 132.0, 131.6, 131.3, 130.2, 129.9, 129.3, 128.0, 127.7, 124.3, 122.5, 117.8, 116.4, 103.9, 56.2, 39.9, 29.6, 10.1. IR (KBr) ν 2980, 1836, 1658, 1556, 1262, 755. HRMS (EI) m/z: M+ Calc. for C26H19Br79O4, 474.0467, Found 474.0475, M+ Calc. for C26H19Br81O4, 476.0446, Found 474.0443.
:
1); [α]25D +211.3 (c 1.4, CHCl3), HPLC analysis: 90% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 90
:
10, 1.0 mL min−1, 254 nm, 8.6 min (major), 10.7 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.55–7.51 (m, 2H), 7.50–7.48 (m, 2H), 7.44–7.39 (m, 3H), 7.27–7.22 (m, 1H), 7.16 (d, J = 8.7 Hz, 2H), 7.06 (d, J = 8.1 Hz, 1H), 6.68 (d, J = 8.7 Hz, 2H), 4.67 (s, 1H), 2.38–2.29 (m, 2H), 1.20 (t, J = 6.9 Hz, 3H). 13C NMR (300 MHz, CDCl3) δ 169.6, 164.0, 158.1, 151.6, 135.1, 134.3, 131.6, 131.4, 130.2, 129.9, 129.4, 129.1, 128.0, 127.4, 124.3, 117.8, 116.4, 103.9, 56.1, 40.0, 29.7, 10.1. IR (KBr) ν 3010, 1856, 1648, 1556, 1262, 775. HRMS (EI) m/z: M+ Calc. for C26H19ClO4, 430.0972, Found 430.0979.
:
1); [α]25D +153.3 (c 1.1, CHCl3), HPLC analysis: 66% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 85
:
15, 1.0 mL min−1, 254 nm, 14.9 min (major), 18.5 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.55–7.37 (m, 8H), 7.25–7.23 (m, 1H), 7.05–6.95 (m, 2H), 6.61 (d, J = 7.5 Hz, 2H), 4.64 (s, 1H), 2.35–2.30 (m, 2H), 2.22 (s, 3H), 1.19 (t, J = 6.9 Hz, 3H). 13C NMR (300 MHz, CDCl3) δ 170.3, 164.1, 158.4, 151.8, 138.1, 133.5, 131.8, 131.5, 130.0, 129.7, 129.5, 128.0, 126.0, 124.2, 117.8, 117.0, 104.2, 56.3, 40.3, 29.8, 21.1, 10.3. IR (KBr) ν 3026, 1851, 1674, 1512, 1221, 765, 565, 480. HRMS (EI) m/z: M+ Calc. for C27H22O4, 410.1518, Found 410.1523.
:
1); [α]25D +142.1 (c 1.0, CHCl3), HPLC analysis: 98% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 90
:
10, 1.0 mL min−1, 254 nm, 16.9 min (major), 28.5 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.64 (d, J = 7.2 Hz, 2H), 7.50–7.32 (m, 5H), 7.16–7.09 (m, 2H), 4.27 (s, 1H), 2.32–2.24 (m, 1H), 2.04–2.02 (m, 1H), 2.02–2.00 (m, 1H), 1.80–1.08 (m, 8H), 0.87–0.85 (m, 1H). 13C NMR (300 MHz, CDCl3) δ 172.0, 160.0, 151.8, 131.7, 131.4, 130.2, 129.7, 129.5, 128.3, 127.9, 124.0, 117.7, 103.0, 49.2, 43.4, 34.8, 30.6, 30.5, 28.8, 24.8, 23.1. IR (KBr) ν 3030, 1816, 1658, 1356, 1262, 760. HRMS (EI) m/z: M+ Calc. for C24H22O4, 374.1518, Found 374.1526.
:
1); [α]25D +173.1 (c 1.0, CHCl3), HPLC analysis: 48% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 85
:
15, 1.0 mL min−1, 254 nm, 12.9 min (major), 15.4 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J = 7.2 Hz, 1H), 7.39 (d, J = 6.9 Hz, 2H), 7.40–7.09 (m, 10H), 7.02 (d, J = 7.8 Hz, 1H), 4.33 (s, 1H), 4.04 (d, J = 15.0 Hz, 1H), 3.11 (d, J = 15.3 Hz, 1H), 2.01–1.91 (m, 1H), 1.88–1.75 (m, 1H), 0.90 (t, J = 7.2 Hz, 3H). 13C NMR (300 MHz, CDCl3) δ 169.3, 161.1, 160.9, 151.3, 135.9, 132.1, 131.1, 129.8, 129.3, 129.1, 128.8, 128.1, 127.9, 127.3, 124.1, 118.9, 118.1, 101.4, 49.6, 39.2, 37.0, 26.0, 8.7. IR (KBr) ν 2990, 1766, 1556, 1455, 1262, 779. HRMS (EI) m/z: M+ Calc. for C27H22O4, 410.1518, Found 410.1523.
:
1); [α]25D +256.4 (c 1.5, CHCl3), HPLC analysis: 87% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 85
:
15, 1.0 mL min−1, 254 nm, 12.3 min (major), 16.2 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.49–7.46(m, 3H), 7.42–7.36 (m, 1H), 7.25–7.15 (m, 6H), 7.03 (d, J = 8.1 Hz, 1H), 6.71 (d, J = 6.6 Hz, 2H), 4.64 (s, 1H), 2.39–2.31 (m, 3H), 1.18 (t, J = 7.2 Hz, 3H). 13C NMR (300 MHz, CDCl3) δ 170.2, 164.2, 158.3, 151.6, 142.2, 136.4, 130.0, 129.9, 129.4, 128.8, 128.6, 128.5, 128.2, 126.0, 124.0, 117.6, 116.8, 103.2, 56.8, 40.2, 29.5, 21.7, 10.1. IR (KBr) ν 3030, 1851, 1674, 1512, 1322, 775, 525, 458. HRMS (EI) m/z: M+ Calc. for C27H22O4, 410.1518, Found 410.1522.
:
1); [α]25D +163 (c 1.0, CHCl3), HPLC analysis: 80% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 90
:
10, 1.0 mL min−1, 254 nm, 15.2 min (major), 21.7 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.54–7.48 (m, 3H), 7.43–7.37 (m, 3H), 7.27–7.16 (m, 4H), 7.04 (d, J = 8.1 Hz, 1H), 6.71 (d, J = 6.6 Hz, 2H), 4.64 (s, 1H), 2.39–2.31 (m, 3H), 1.18 (t, J = 7.2 Hz, 3H). 13C NMR (300 MHz, CDCl3) δ 169.7, 162.7, 158.0, 151.5, 136.3, 131.4, 131.2, 130.3, 130.0, 129.4, 128.9, 128.3, 126.1, 125.9, 124.2, 117.7, 116.5, 104.6, 56.4, 40.2, 29.5, 10.1. IR (KBr) ν 3030, 1851, 1774, 1542, 1221, 785, 468. HRMS (EI) m/z: C26H19Br79O4, 474.0467, Found 474.0475, M+ Calc. for C26H19Br81O4, 476.0446, Found 474.0443.
:
1); [α]25D +189.7 (c 1.3, CHCl3), HPLC analysis: 87% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 90
:
10, 1.0 mL min−1, 254 nm, 16.2 min (major), 25.8 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.46–7.41 (m, 3H), 7.40–7.36 (m, 3H), 7.28–7.14 (m, 4H), 7.05 (d, J = 7.5 Hz, 1H), 6.71 (d, J = 6.6 Hz, 2H), 4.66 (s, 1H), 2.40–2.32 (m, 3H), 1.19 (t, J = 7.2 Hz, 3H). 13C NMR (300 MHz, CDCl3) δ 169.8, 162.7, 158.1, 151.5, 137.7, 136.3, 131.3, 130.1, 130.2, 129.4, 128.9, 128.4, 128.3, 125.9, 124.3, 117.7, 116.6, 104.6, 56.5, 40.2, 29.6, 10.2. IR (KBr) ν 3040, 1851, 1674, 1512, 1221, 760, 545, 480. HRMS (EI) m/z: M+ Calc. for C26H19ClO4, 430.0972, Found 430.0979.
:
1); [α]25D +241.2 (c 1.5, CHCl3), HPLC analysis: 66% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 85
:
15, 1.0 mL min−1, 254 nm, 9.4 min (major), 13.4 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.52–7.46 (m, 3H), 7.44–7.36 (m, 3H), 7.28–7.14 (m, 4H), 7.05 (d, J = 8.7 Hz, 1H), 6.71 (d, J = 6.6 Hz, 2H), 4.65 (s, 1H), 2.40–2.31 (m, 2H), 1.19 (t, J = 7.2 Hz, 3H). 13C NMR (300 MHz, CDCl3) δ 169.9, 162.8, 158.2, 151.6, 140.3, 137.8, 136.4, 131.5, 131.4, 130.2, 130.0, 129.5, 129.0, 128.5, 128.4, 126.0, 124.4, 117.8, 116.7, 104.7, 56.6, 40.3, 29.7, 10.3. IR (KBr) ν 3034, 1851, 1774, 1512, 1221, 790, 515, 468. HRMS (EI) m/z: M+ Calc. for C26H19ClO4, 430.0972, Found 430.0979.
:
1); [α]25D +106.8 (c 1.0, CHCl3), HPLC analysis: 42% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 85
:
15, 1.0 mL min−1, 254 nm, 19.0 min (major), 22.4 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.56 (d, J = 7.8 Hz, 1H), 7.43–7.28 (m, 3H), 7.27–7.23 (m, 5H), 7.08 (d, J = 5.1 Hz, 1H), 6.92–6.82 (br, 2H), 4.80 (s, 1H), 2.41–2.35 (t, J = 6.0 Hz, 3H), 1.25–1.23 (br, 3H). 13C NMR (300 MHz, CDCl3) δ 169.2, 159.9, 157.4, 151.6, 136.8, 133.7, 132.2, 131.2, 130.0, 129.7, 129.3, 128.9, 128.3, 127.9, 126.7, 126.2, 124.3, 116.7, 55.8, 38.8, 30.2, 10.3. IR (KBr) ν 3030, 1871, 1772, 1642, 1221, 780, 548, 468. HRMS (EI) m/z: M+ Calc. for C26H19ClO4, 430.0972, Found 430.0979.
:
1); [α]25D +251.4 (c 1.5, CHCl3), HPLC analysis: 91% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 90
:
10, 1.0 mL min−1, 254 nm, 14.8 min (major), 19.0 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.54–7.48 (m, 4H), 7.47–7.31 (m, 3H), 7.25–7.18 (m, 3H), 6.99 (d, J = 8.7 Hz, 1H), 6.76–6.73 (m, 2H), 4.62 (s, 3H), 2.36 (q, J = 7.2 Hz, 2H), 1.20 (t, J = 7.2 Hz, 3H). 13C NMR (300 MHz, CDCl3) δ 169.5, 164.5, 157.6, 150.2, 136.1, 131.6, 131.3, 130.1, 129.9, 129.2, 129.0, 128.95, 128.4, 127.9, 125.9, 119.0, 118.5, 103.1, 56.5, 40.2, 29.4, 10.1. IR (KBr) ν 3040, 1972, 1774, 1610, 1221, 780, 468. HRMS (EI) m/z: M+ Calc. for C26H19ClO4, 430.0972, Found 430.0979.
:
1); [α]25D +213.3 (c 1.0, CHCl3), HPLC analysis: 82% ee [Daicel CHIRALPAK AD-H column, 20 °C, 254 nm hexane–i-PrOH = 90
:
10, 1.0 mL min−1, 254 nm, 16.1 min (major), 25.8 min (minor)]. 1H NMR (300 MHz, CDCl3) δ 7.62 (s, 1H), 7.61–7.34 (m, 6H), 7.25–7.17 (m, 3H), 6.93 (d, J = 8.7 Hz, 1H), 6.75 (d, J = 6.0 Hz, 2H), 4.61 (s, 1H), 2.35 (q, J = 6.9 Hz, 2H), 1.19 (t, J = 7.2 Hz, 3H). 13C NMR (300 MHz, CDCl3) δ 169.5, 164.5, 157.5, 150.7, 136.0, 133.0, 132.0, 131.6, 131.3, 129.9, 128.9, 128.4, 127.9, 125.9, 119.4, 118.9, 116.5, 103.0, 56.4, 40.1, 29.4, 10.1. IR (KBr) ν 3030, 1816, 1658, 1556, 1462, 775. HRMS (EI) m/z: C26H19Br79O4, 474.0467, Found 474.0475, M+ Calc. for C26H19Br81O4, 476.0466, Found 474.0460.
:
10) with a trace of petroleum ether. CCDC 901312† contains the supplementary crystallographic data for this paper.Footnote |
| † Electronic supplementary information (ESI) available. CCDC 901312. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2ob26804c |
| This journal is © The Royal Society of Chemistry 2013 |