Issue 11, 2013

All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance

Abstract

We report a high ZT of ∼2.0 at 823 K for 2% Na-doped PbTe with 6% MgTe with excellent thermal stability. We attribute the high thermoelectric performance to a synergistic combination of enhanced power factor, reduction of the lattice thermal conductivity and simultaneous suppression of bipolar thermal conductivity. MgTe inclusion in PbTe owns triple functions: the Mg alloying within the solubility limit in PbTe modifies the valence band structure by pushing the two valence bands (L and Σ bands) closer in energy, thereby facilitating charge carrier injection. When the solubility limit of Mg is exceeded, ubiquitous endotaxial nanostructures form, which when coupled with mesoscale microstructuring results in a very low (lattice) thermal conductivity through all-scaled length phonon scattering. Meanwhile, most significantly, the Mg alloying enlarges the energy gap of conduction band (C band) and light valence band (L band), thereby suppresses the bipolar thermal conductivity through an increase in band gap.

Graphical abstract: All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance

Supplementary files

Article information

Article type
Paper
Submitted
29 Jun 2013
Accepted
11 Sep 2013
First published
24 Sep 2013

Energy Environ. Sci., 2013,6, 3346-3355

All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance

L. D. Zhao, H. J. Wu, S. Q. Hao, C. I. Wu, X. Y. Zhou, K. Biswas, J. Q. He, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, Energy Environ. Sci., 2013, 6, 3346 DOI: 10.1039/C3EE42187B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements