Issue 24, 2013

Structures and magnetic properties of copper(ii) and manganese(ii) polymers derived from pseudohalides and a flexible zwitterionic dicarboxylate ligand

Abstract

The flexible zwitterionic dicarboxylate ligand 1,4-bis(4-carboxylato-1-pyridinium)butane (bcpb) assumes different conformations to collaborate with pseudohalides in various coordination modes to produce coordination polymers in which distinct anionic motifs with mixed carboxylate and pseudohalide bridges are interlinked by the cationic butylenebis(pyridinium) tethers. The Cu(II) compound, [Cu2(bcpb)(N3)4]n·nH2O (1), is a 1D coordination polymer based on the defective dicubane-like [Cu43-1,1,1-N3)2(μ-1,1-N3)2(μ-1,1-OCO)2] cluster. With Mn(II), four distinct 3D coordination polymers, [Mn4(bcpb)4(N3)(H2O)4]n(ClO4)7n·nCH3OH·3nH2O (2), [Mn2.5(bcpb)(N3)5(H2O)2]n (3), [Mn2(bcpb)(N3)4]n·nH2O (4), and [Mn2(bcpb)(NCO)4]n·nH2O (5), were characterized. 2 is the first Mn(II) compound with the rare μ4-1,1,3,3 azide bridge and exhibits an unusual 3D framework based on the [Mn44-1,1,3,3-N3)(μ-1,3-OCO)6] cluster. In 3, the unique undulated honeycomb-like [Mn2(μ-1,3-N3)3]n layers are interlinked into a 3D framework by disordered [Mn(μ-1,1-N3)4(μ-1,3-OCO)2] and [(Oaqua–H)2⋯OCO]2 moieties, and the bcpb ligands serve as additional interlayer linkers to lead to the rare self-catenated 66 net. 4 and 5 show 3-fold interpenetrated 3D frameworks based on the chains with (μ-1,1-N3)2(μ-1,3-OCO) and (μ-N,N-NCO)2(μ-1,3-OCO) bridges, respectively. Magnetic studies indicated that 1 shows competing ferromagnetic and antiferromagnetic interactions. Compounds 2–5 all show antiferromagnetic coupling between Mn(II) ions, while 3 shows 3D ordering. Analyses of magneto-structural data suggest a general trend that the antiferromagnetic interaction through (μ-1,1-N3)2(μ-1,3-OCO) or (μ-N,N-NCO)2(μ-1,3-OCO) increases with a decrease of the Mn⋯Mn distance.

Graphical abstract: Structures and magnetic properties of copper(ii) and manganese(ii) polymers derived from pseudohalides and a flexible zwitterionic dicarboxylate ligand

Supplementary files

Article information

Article type
Paper
Submitted
20 Feb 2013
Accepted
30 Mar 2013
First published
03 Apr 2013

Dalton Trans., 2013,42, 8748-8760

Structures and magnetic properties of copper(II) and manganese(II) polymers derived from pseudohalides and a flexible zwitterionic dicarboxylate ligand

K. Wang, X. Yi, X. Wang, X. Li and E. Gao, Dalton Trans., 2013, 42, 8748 DOI: 10.1039/C3DT50460C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements