Issue 2, 2013

Theoretical and computational studies of dendrimers as delivery vectors

Abstract

It is a great challenge for nanomedicine to develop novel dendrimers with maximum therapeutic potential and minimum side-effects for drug and gene delivery. As delivery vectors, dendrimers must overcome lots of barriers before delivering the bio-agents to the target in the cell. Extensive experimental investigations have been carried out to elucidate the physical and chemical properties of dendrimers and explore their behaviors when interacting with biomolecules, such as gene materials, proteins, and lipid membranes. As a supplement of the experimental techniques, it has been proved that computer simulations could facilitate the progress in understanding the delivery process of bioactive molecules. The structures of dendrimers in dilute solutions have been intensively investigated by monomer-resolved simulations, coarse-grained simulations, and atom-resolved simulations. Atomistic simulations have manifested that the hydrophobic interactions, hydrogen-bond interactions, and electrostatic attraction play critical roles in the formation of dendrimer–drug complexes. Multiscale simulations and statistical field theories have uncovered some physical mechanisms involved in the dendrimer-based gene delivery systems. This review will focus on the current status and perspective of theoretical and computational contributions in this field in recent years. (275 references)

Graphical abstract: Theoretical and computational studies of dendrimers as delivery vectors

Supplementary files

Article information

Article type
Review Article
Submitted
01 Aug 2012
First published
01 Nov 2012

Chem. Soc. Rev., 2013,42, 705-727

Theoretical and computational studies of dendrimers as delivery vectors

W. Tian and Y. Ma, Chem. Soc. Rev., 2013, 42, 705 DOI: 10.1039/C2CS35306G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements