Issue 29, 2013

A Langmuir–Hinshelwood approach to the kinetic modelling of catalytic ammonia decomposition in an integral reactor

Abstract

The increasing interest in ammonia decomposition is due to the fact that this compound can be used advantageously as a hydrogen carrier, allowing the development of single-step hydrogen generation systems. With the aim of developing efficient reactors for ammonia decomposition, e.g. for fuel cell applications, it is imperative to investigate the kinetics and reaction mechanism in depth. The main goal of this work is to develop reliable kinetic models that are able to predict the performance obtained using integral reactors, e.g. monoliths. In this case, an almost complete NH3 conversion is obtained, with a high H2 concentration at the exit of the reactor. The operating conditions, mainly the gas composition, are very different along the reactor. In addition, the temperatures needed to attain such large conversions are usually high. The kinetic models developed in this contribution are based on the Langmuir isotherm, considering that all the adsorbed species can be kinetically relevant, that the slow step or steps can be partially reversible, and that the surface can be considered as energetically uniform, i.e. ideal. Among other conclusions, the results obtained indicate that the variable kinetic orders and apparent activation energies frequently reported in the literature can be direct consequences of the data analysis and can therefore also be explained without considering any change in the controlling step with the reaction temperature or in the hydrogen or ammonia concentration.

Graphical abstract: A Langmuir–Hinshelwood approach to the kinetic modelling of catalytic ammonia decomposition in an integral reactor

Article information

Article type
Paper
Submitted
15 Feb 2013
Accepted
10 Apr 2013
First published
11 Apr 2013

Phys. Chem. Chem. Phys., 2013,15, 12104-12117

A Langmuir–Hinshelwood approach to the kinetic modelling of catalytic ammonia decomposition in an integral reactor

S. Armenise, E. García-Bordejé, J. L. Valverde, E. Romeo and A. Monzón, Phys. Chem. Chem. Phys., 2013, 15, 12104 DOI: 10.1039/C3CP50715G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements