Issue 39, 2013

A successive layer-by-layer assembly of supramolecular frameworks driven by a novel type of face-to-face π+–π+ interactions

Abstract

The solid-state complex [PTPH3](NO3)3·2(HNO3) (1) has been synthesized and characterized by X-ray studies, where PTPH3 is the triply protonated form of 4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine (PTP). The solid-state structure of the complex reveals that the π+–π+ interactions are the major driving force in the crystal packing while π+–π, π–π and π–anion interactions assist the overall stabilization of self-assembly. Complex 1 exhibits two different π-stack layers, where layer 1 is generated through π+–π+ interactions and the mutual forces of π+–π+ and π+–π form layer 2. The interaction energies of the main driving forces (π+–π+, π+–π and π–anion interactions) observed in the crystal structure have been calculated using dispersion-corrected density functional theory (DFT-D). An analysis of the Hirshfeld surface of complex 1 shows the intermolecular interactions involved within the crystal structure and corresponding quantitative information are presented by fingerprint plots.

Graphical abstract: A successive layer-by-layer assembly of supramolecular frameworks driven by a novel type of face-to-face π+–π+ interactions

Supplementary files

Article information

Article type
Paper
Submitted
25 Jun 2013
Accepted
01 Aug 2013
First published
02 Aug 2013

CrystEngComm, 2013,15, 7879-7886

A successive layer-by-layer assembly of supramolecular frameworks driven by a novel type of face-to-face π+–π+ interactions

P. Manna, S. K. Seth, M. Mitra, A. Das, N. J. Singh, S. R. Choudhury, T. Kar and S. Mukhopadhyay, CrystEngComm, 2013, 15, 7879 DOI: 10.1039/C3CE41230J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements