Issue 43, 2013

A graph theory approach to structure solution of network materials from two-dimensional solid-state NMR data

Abstract

An NMR crystallography strategy is presented for solving the structures of materials such as zeolites and related network materials from a combination of the unit cell and space group information derived from a diffraction experiment and a single two-dimensional NMR correlation spectrum that probes nearest-neighbour interactions. By requiring only a single 2D NMR spectrum, this strategy overcomes two limitations of previous approaches. First, the structures of materials having poor signal-to-noise in solid-state NMR experiments can be investigated using this approach since a series of 2D spectra is not required. Secondly, the structures of aluminophosphate materials can potentially be determined from 27Al/31P solid-state NMR experiments since this approach does not require the isolated spin pairs which have been important for determining structures of silicate materials by 29Si solid-state NMR. Using concepts from graph theory, the structure solution strategy is described in detail using a hypothetical two-dimensional network structure. A collection of two-dimensional network structures generated by the algorithm under various initial conditions is presented. The algorithm was tested on a series of 27 zeolite framework types found in the International Zeolite Association’s zeolite structure database. Finally, the structure of the zeolite ITQ-4 was solved from powder X-ray diffraction data and a single 29Si double quantum NMR correlation spectrum. The limitations of the strategy are discussed and new directions for this approach are outlined.

Graphical abstract: A graph theory approach to structure solution of network materials from two-dimensional solid-state NMR data

Article information

Article type
Paper
Submitted
08 Jun 2013
Accepted
24 Jul 2013
First published
24 Jul 2013

CrystEngComm, 2013,15, 8748-8762

A graph theory approach to structure solution of network materials from two-dimensional solid-state NMR data

D. H. Brouwer and K. P. Langendoen, CrystEngComm, 2013, 15, 8748 DOI: 10.1039/C3CE41058G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements