Issue 2, 2013

Selective photocatalytic reactions with organic photocatalysts

Abstract

Selective photocatalytic oxygenation of various substrates has been achieved using organic photocatalysts via photoinduced electron-transfer reactions of photocatalysts with substrates and dioxygen under visible light irradiation. Photoinduced electron transfer from benzene to the singlet-excited state of the 3-cyano-1-methylquinolinium ion has enabled the oxidation of benzene by dioxygen with water to yield phenol selectively. Alkoxybenzenes were obtained when water was replaced by alcohols under otherwise the same experimental conditions. Photocatalytic selective oxygenation reactions of aromatic compounds have also been achieved using an electron donor–acceptor linked dyad, 9-mesityl-10-methylacridinium ion (Acr+–Mes) acting as a photocatalyst and dioxygen as an oxidant under visible light irradiation. The oxygenation reaction is initiated by intramolecular photoinduced electron transfer from the mesitylene moiety to the singlet-excited state of the acridinium moiety of Acr+–Mes to afford an extremely long-lived electron-transfer state. The electron-transfer state can oxidize and reduce substrates and dioxygen, respectively, leading to selective oxygenation and halogenation of substrates. C–C bond formation of substrates has also been made possible by using Acr+–Mes as a photocatalyst.

Graphical abstract: Selective photocatalytic reactions with organic photocatalysts

Article information

Article type
Perspective
Submitted
06 Sep 2012
Accepted
11 Oct 2012
First published
19 Oct 2012

Chem. Sci., 2013,4, 561-574

Selective photocatalytic reactions with organic photocatalysts

S. Fukuzumi and K. Ohkubo, Chem. Sci., 2013, 4, 561 DOI: 10.1039/C2SC21449K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements