Issue 19, 2012

Multi-photon in situ synthesis and patterning of polymer-embedded nanocrystals

Abstract

The in situ synthesis and patterning of CdS nanocrystals in a polymer matrix is performed via multi-photon absorption. Quantum-sized CdS nanocrystals are obtained by irradiating a cadmium thiolate precursor dispersed in a transparent polymer matrix with a focused near infrared femtosecond laser beam. High resolution transmission electron microscopy evidences the formation of nanocrystals with wurtzite crystalline phase. Fluorescent, nanocomposite patterns with sub-micron spatial resolution are fabricated by scanning the laser beam on the polymer–precursor composite. Moreover, the emission energy of the CdS nanocrystals can be tuned in the range 2.5–2.7 eV, by changing the laser fluences in the range 0.10–0.45 J cm−2. This method enables therefore the synthesis of luminescent, CdS-based composites to be used within patterned nanophotonic and light-emitting devices.

Graphical abstract: Multi-photon in situ synthesis and patterning of polymer-embedded nanocrystals

Supplementary files

Article information

Article type
Paper
Submitted
15 Dec 2011
Accepted
05 Mar 2012
First published
12 Apr 2012

J. Mater. Chem., 2012,22, 9787-9793

Multi-photon in situ synthesis and patterning of polymer-embedded nanocrystals

A. Camposeo, M. Polo, A. A. R. Neves, D. Fragouli, L. Persano, S. Molle, A. M. Laera, E. Piscopiello, V. Resta, A. Athanassiou, R. Cingolani, L. Tapfer and D. Pisignano, J. Mater. Chem., 2012, 22, 9787 DOI: 10.1039/C2JM16625A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements