Issue 22, 2012

Probing differences in binding of methylbenzylamine enantiomers to chiral cobalt(ii) salen complexes

Abstract

In this work, we investigate the mode of chiral interactions between the asymmetric CoII salen complex, (S,S)-N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamine-CoII ([Co(1)]), and single enantiomers of methylbenzylamine (MBA) using different continuous-wave and pulsed electron paramagnetic resonance techniques combined with density functional theory computations. While [Co(1)] displays a large affinity for binding a single MBA molecule, it has a much weaker affinity for binding a second MBA molecule. Subtle differences are detected in the EPR spectra of the homochiral (S,S-[Co(1)](S-MBA)) and heterochiral (S,S-[Co(1)](R-MBA)) adducts using low [Co(1)] : MBA ratios. Moreover at high concentrations of racemic MBA, a strong preference (80%) is observed for the formation of the bis-ligated heterochiral adduct (S,S-[Co(1)](R-MBA)2) compared to the homochiral analogue (20% of S,S-[Co(1)](S-MBA)2). Differences in the 14N hyperfine coupling from the diamine backbone in [Co(1)] were also evidenced by hyperfine sublevel correlation (HYSCORE), revealing magnetically equivalent N nuclei for the homochiral adducts and inequivalent N nuclei for the heterochiral adducts. Using DFT, these slight differences were reproduced, and explained based upon the different modes of alignment of the MBA molecule in the adduct. The current findings therefore reveal the appreciable enantiodiscrimination that occurs during the binding of MBA enantiomers to the chiral CoII salen complex.

Graphical abstract: Probing differences in binding of methylbenzylamine enantiomers to chiral cobalt(ii) salen complexes

Supplementary files

Article information

Article type
Paper
Submitted
27 Jan 2012
Accepted
28 Mar 2012
First published
28 Mar 2012

Dalton Trans., 2012,41, 6861-6870

Probing differences in binding of methylbenzylamine enantiomers to chiral cobalt(II) salen complexes

S. Zamani, E. Carter, D. M. Murphy and S. Van Doorslaer, Dalton Trans., 2012, 41, 6861 DOI: 10.1039/C2DT30207A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements