Issue 9, 2011

Cubic crystals from cubic colloids

Abstract

We have studied the crystallization behavior of colloidal cubes by means of tunable depletion interactions. The colloidal system consists of novel micron-sized cubic particles prepared by silica deposition on hematite templates and various non-adsorbing water-soluble polymers as depletion agents. We have found that under certain conditions the cubes self-organize into crystals with a simple cubic symmetry, which is set by the size of the depletant. The dynamic of crystal nucleation and growth is investigated, monitoring the samples in time by optical microscopy. Furthermore, by using temperature sensitive microgel particles as depletant it is possible to fine tune depletion interactions to induce crystal melting. Assisting crystallization with an alternating electric field improves the uniformity of the cubic pattern allowing the preparation of macroscopic (almost defect-free) crystals that show visible Bragg colors.

Graphical abstract: Cubic crystals from cubic colloids

Supplementary files

Article information

Article type
Communication
Submitted
03 Nov 2010
Accepted
09 Dec 2010
First published
22 Dec 2010

Soft Matter, 2011,7, 4139-4142

Cubic crystals from cubic colloids

L. Rossi, S. Sacanna, W. T. M. Irvine, P. M. Chaikin, D. J. Pine and A. P. Philipse, Soft Matter, 2011, 7, 4139 DOI: 10.1039/C0SM01246G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements