Multipyrene terminated hyperbranched polyglycidol (mPHP) has been synthesized and used to non-covalently functionalize pristine graphene sheets (GSs) through π–π stacking interactions. Mediated by the mPHP layer, a variety of metal nanoparticles (Au, Ag and Pt) were in situ generated and deposited onto the surface-modified GS, yielding versatile GS/mPHP/metal nanohybrids. As typical examples, by simply controlling the concentration of HAuCl4 used, Au nanostructures ranging from isolated spheres to a continuous film were created and coated onto the surface-modified GS. The studies on the fluorescence properties of resulting GS/mPHP/Au hybrid nanostructures reveal that the GS and controllable content of Au components in the hybrids can effectively quench the fluorescence emission of mPHP in a controlled manner. Further investigation indicates that GS/mPHP/Au hybrids are promising surface enhanced Raman scattering (SERS) substrates. The SERS activities of these hybrids depend on the contents and form of the Au. The GS/mPHP/Au hybrid containing continuous Au films exhibits the strongest SERS activity. GS/mPHP/Au hybrids are also used as efficient heterogeneous catalysts for the reduction of 4-NP, and demonstrate excellent catalytic performance. The detailed reaction kinetics and the reusability of such catalysts have also been investigated.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?