Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

We present a highly parallel microfluidic approach for contacting single cell pairs. The approach combines a differential fluidic resistance trapping method with a novel cellular valving principle for homotypic and heterotypic single cell co-culturing. Differential fluidic resistance was used for sequential single cell arraying, with the adhesion and flattening of viable cells within the microstructured environment acting to produce valves in the open state. Reversal of the flow was used for the sequential single cell arraying of the second cell type. Plasma stencilling, along the linear path of least resistance, was required to confine the cells within the trap regions. Prime flow conditions with minimal shear stress were identified for highly efficient cell arraying (∼99%) and long term cell culture. Larger trap dimensions enabled the highest levels of cell pairing (∼70%). The single cell co-cultures were in close proximity for the formation of connexon structures and the study of contact modes of communication. The research further highlights the possibility of using the natural behaviour of cells as the working principle behind responsive microfluidic elements.

Graphical abstract: A microfluidic array with cellular valving for single cell co-culture

Page: ^ Top