Issue 20, 2011

Polarization and temperature dependent spectra of poly(3-hydroxyalkanoate)s measured at terahertz frequencies

Abstract

Temperature-dependent terahertz (THz) absorption spectra of poly(3-hydroxyalkanoate)s (PHAs) were measured by using a Fourier transform far-infrared (FT-FIR) spectrometer and a THz time-domain spectrometer over a temperature range of 10 K to 465 K with a liquid helium cryostat and a heating cell. Clear differences were observed between the spectra of crystalline and amorphous polyhydroxybutyrate (PHB), indicating that the absorption peaks observed in the THz spectra originated in the higher-order conformation of PHB. The polarization spectra of a stretched PHB sample were measured, and the direction of the vibrational transition moment was determined. The temperature dependences of the spectra reveal frequency shifts and broadening of the absorption peaks with temperature, suggesting large anharmonicity of the vibrational potential. The temperature shift behaviour is quite different in each transition. Some of the transitions show a blue shift, which cannot be explained by a simple anharmonic potential model. Frequency shifts of the peaks were mainly observed below 10 THz, which suggests a large anharmonicity of the vibrational potential at lower frequencies.

Graphical abstract: Polarization and temperature dependent spectra of poly(3-hydroxyalkanoate)s measured at terahertz frequencies

Article information

Article type
Paper
Submitted
06 Nov 2010
Accepted
25 Feb 2011
First published
05 Apr 2011

Phys. Chem. Chem. Phys., 2011,13, 9173-9179

Polarization and temperature dependent spectra of poly(3-hydroxyalkanoate)s measured at terahertz frequencies

H. Hoshina, Y. Morisawa, H. Sato, H. Minamide, I. Noda, Y. Ozaki and C. Otani, Phys. Chem. Chem. Phys., 2011, 13, 9173 DOI: 10.1039/C0CP02435J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements