Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

ZnO films composed of uniform three-dimensional (3D) hierarchical microstructures on the conductive glass were synthesized by a one-step polyethylene glycol-assisted hydrothermal route with excellent reproducibility. The morphology of the ZnO hierarchical structured films was controlled by adjusting hydrothermal reaction conditions, i.e., time, temperature, reactant concentration, Zn source and surfactant. A specific growth mechanism for the ZnO hierarchical microstructured films is proposed, and the hydrothermal time is found to be a crucial role in the formation of the hierarchical structures either from the initial nucleation and growth of the primary rods or secondary/tertiary nucleation and growth on the the column facets of the primary rods. As-fabricated ZnO films show a strong photoluminescence emission peak at 435 nm, and a superhydrophobic adhesive surface with a water contact angle of 154.1° and a high contact angle hysteresis.

Graphical abstract: A controllable hydrothermal synthesis of uniform three-dimensional hierarchical microstructured ZnO films

Page: ^ Top