Issue 23, 2010

Comparable stabilisation, structural changes and activities can be induced in FGF by a variety of HS and non-GAG analogues: implications for sequence-activity relationships

Abstract

The activities of heparan sulfate (HS) and heparin do not correlate simply with sulfation levels or sequence. The alternative hypothesis, that appropriate charge and conformational characteristics for protein binding and activity can be provided by other sequences in heparan sulfate and, possibly, also in unrelated sulfated polysaccharides, is explored. Differential scanning fluorimetry was used to measure the thermostabilisation bestowed by modified heparin polysaccharides (proxies for heparan sulfate) on fibroblast growth factor-1 (FGF-1) and fibroblast growth factor-2 (FGF-2), prototypical heparan sulfate-binding proteins, revealing varied abilities and primary sequence-activity redundancy. The effect of substitution pattern on the heparin/heparan sulfate backbone was explored using principal component analysis of 13C NMR chemical shift data for homogeneously modified heparin polysaccharides revealing complex conformational effects. No simple relationship emerged between these polysaccharides, with their distinct charge distributions and geometries, and their ability to signal. Other, structurally unrelated sulfated polysaccharides were also able to support signalling. These influenced FGF stabilisation in a similar manner to the HS analogues and provided analogous cell signalling activity. For FGF-1, but not FGF-2, signaling correlated strongly with protein stabilisation and circular dichroism spectroscopy demonstrated that some non-HS polysaccharides invoked comparable secondary structural changes to those induced by heparin. Active conformations can readily be found in several heparin derivatives, as well as among non-HS polysaccharides, which comprise unrelated primary sequences, confirming the hypothesis and implying that the level of unique information contained in HS sequences may be much lower than previously thought.

Graphical abstract: Comparable stabilisation, structural changes and activities can be induced in FGF by a variety of HS and non-GAG analogues: implications for sequence-activity relationships

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2010
Accepted
02 Sep 2010
First published
03 Sep 2010

Org. Biomol. Chem., 2010,8, 5390-5397

Comparable stabilisation, structural changes and activities can be induced in FGF by a variety of HS and non-GAG analogues: implications for sequence-activity relationships

T. R. Rudd, K. A. Uniewicz, A. Ori, S. E. Guimond, M. A. Skidmore, D. Gaudesi, R. Xu, J. E. Turnbull, M. Guerrini, G. Torri, G. Siligardi, M. C. Wilkinson, D. G. Fernig and E. A. Yates, Org. Biomol. Chem., 2010, 8, 5390 DOI: 10.1039/C0OB00246A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements