Issue 23, 2017

DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance

Abstract

We herein demonstrate that DNA origami can work as a multifunctional platform integrating a chemotherapeutic drug (doxorubicin), gold nanorods and a tumour-specific aptamer MUC-1, to realize the effective circumvention of drug resistance. Doxorubicin (DOX) was loaded efficiently onto DNA origami through base pair intercalation and surface-modified gold nanorods (AuNRs) were assembled onto the DNA origami through DNA hybridization. Due to the active targeting effect of the assembled aptamers, the multifunctional nanostructures achieved increased cellular internalization of DOX and AuNRs. Upon near-infrared (NIR) laser irradiation, the P-glycoprotein (multidrug resistance pump) expression of multidrug resistant MCF-7 (MCF-7/ADR) cells was down-regulated, achieving the synergistically chemotherapeutic (DOX) and photothermal (AuNRs) effects.

Graphical abstract: DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance

Supplementary files

Article information

Article type
Communication
Submitted
29 Mar 2017
Accepted
12 May 2017
First published
16 May 2017

Nanoscale, 2017,9, 7750-7754

DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance

L. Song, Q. Jiang, J. Liu, N. Li, Q. Liu, L. Dai, Y. Gao, W. Liu, D. Liu and B. Ding, Nanoscale, 2017, 9, 7750 DOI: 10.1039/C7NR02222K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements