Issue 3, 2010

Protein intrinsic disorder and oligomericity in cell signaling

Abstract

Receptor-mediated signaling plays an important role in health and disease. Recent reports have revealed that many proteins that do not adopt globular structures under native conditions, thus termed intrinsically disordered, are involved in cell signaling. Intriguingly, physiologically relevant oligomerization of intrinsically disordered proteins has been recently observed and shown to exhibit unique biophysical characteristics. On the other hand, ligand-induced or -tuned receptor oligomerization is known to be a general feature of various cell surface receptors and to play a crucial role in signal transduction. In this work, I summarize several distinct features of protein disorder that are especially important as related to signal transduction. Further, I suggest signaling-related functional connections between intrinsic disorder, receptor and protein oligomericity and hypothesize that receptor oligomerization induced or tuned upon ligand binding outside the cell is translated across the membrane into protein oligomerization inside the cell, thus providing a general platform for receptor-mediated signaling. This structures our current multidisciplinary knowledge and views of the mechanisms governing the coupling of recognition to signal transduction and cell response. Importantly, this approach not only reveals previously unrecognized striking similarities in the basic mechanistic principles of function of numerous functionally diverse and unrelated surface membrane receptors, but also suggests the similarity between therapeutic targets, thus opening new horizons for both fundamental and clinically relevant studies.

Graphical abstract: Protein intrinsic disorder and oligomericity in cell signaling

Article information

Article type
Review Article
Submitted
04 Aug 2009
Accepted
25 Sep 2009
First published
03 Nov 2009

Mol. BioSyst., 2010,6, 451-461

Protein intrinsic disorder and oligomericity in cell signaling

A. B. Sigalov, Mol. BioSyst., 2010, 6, 451 DOI: 10.1039/B916030M

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements