Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Ultrafast laser writing of waveguides in glasses is a very flexible and simple method for direct on-chip integration of photonic devices. In this work we present a monolithic optofluidic device in fused silica providing label-free and spatially-resolved sensing in a microfluidic channel. A Mach-Zehnder interferometer is inscribed with the sensing arm orthogonally crossing the microfluidic channel and the reference arm passing over it. The interferometer is integrated either with a microchannel fabricated by femtosecond laser technology or into a commercial lab-on-chip for capillary electrophoresis. The device layout, made possible by the unique three-dimensional capabilities of the technique, enables label-free sensing of samples flowing in the microchannel with spatial resolution of about 10 μm and limit of detection down to 10−4 RIU.

Graphical abstract: Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection

Page: ^ Top