Issue 3, 2010

Nanofluidics in chemical analysis

Abstract

Nanofluidic architectures and devices have already had a major impact on forefront problems in chemical analysis, especially those involving mass-limited samples. This critical review begins with a discussion of the fundamental flow physics that distinguishes nanoscale structures from their larger microscale analogs, especially the concentration polarization that develops at nanofluidic/microfluidic interfaces. Chemical manipulations in nanopores include nanopore-mediated separations, microsensors, especially resistive-pulse sensing of biomacromolecules, fluidic circuit analogs and single molecule measurements. Coupling nanofluidic structures to three-dimensional microfluidic networks is especially powerful and results in applications in sample preconcentration, nanofluidic injection/collection and fast diffusive mixing (160 references).

Graphical abstract: Nanofluidics in chemical analysis

Article information

Article type
Critical Review
Submitted
03 Jul 2009
First published
23 Oct 2009

Chem. Soc. Rev., 2010,39, 1060-1072

Nanofluidics in chemical analysis

A. Piruska, M. Gong, J. V. Sweedler and P. W. Bohn, Chem. Soc. Rev., 2010, 39, 1060 DOI: 10.1039/B900409M

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements