Issue 6, 2010

Growth morphology of α-glycine crystals in solution environments: an extended interface structure analysis

Abstract

Prediction of the morphology of organic crystals is a key first step in controlling crystal growth in chemical and pharmaceutical industries. Here, we predict the growth morphology and the relative growth rate of the morphologically important (010) and (011) faces of glycine crystals in aqueous solutions by fully accounting for the effects of solvent. Molecular dynamics simulations were used to obtain the relevant solvent-dependent properties such as the concentration of adsorbed growth units on the (010) and (011) faces and the amount of adsorbed growth units relative to the solute in the solution and are used along with molecular level crystallographic properties such as interplanar distance and crystallographic factor in newly developed “extended interface structure analysis” to determine the relative growth rates and morphology. We observe that the growth rate of the (011) face is 2.88 times greater than that of (010) face, consistent with experimental observations, in contrast to the much higher relative growth rates (4 to 7) predicted by attachment energy calculations in the literature in the absence of solvent. We show that the polar group present on the (011) face has stronger interactions with the solvent and reduces the growth rate, thereby underscoring the importance of the need to incorporate solvent effects in crystal growth analysis. Our prediction of the growth morphology is also consistent with experimental observations. Overall, the approach presented paves the way for exploring the effects of other solvents and impurities on the kinetics and the morphology of crystal growth.

Graphical abstract: Growth morphology of α-glycine crystals in solution environments: an extended interface structure analysis

Article information

Article type
Paper
Submitted
02 Nov 2009
Accepted
29 Jan 2010
First published
05 Mar 2010

CrystEngComm, 2010,12, 1740-1749

Growth morphology of α-glycine crystals in solution environments: an extended interface structure analysis

S. Gnanasambandam and R. Rajagopalan, CrystEngComm, 2010, 12, 1740 DOI: 10.1039/B922780F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements