Issue 9, 2008

Electronic control of elastomeric microfluidic circuits with shape memory actuators

Abstract

Recently, sophisticated fluidic circuits with hundreds of independent valves have been built by using multi-layer soft-lithography to mold elastomers. However, this shrinking of microfluidic circuits has not been matched by a corresponding miniaturization of the actuation and interfacing elements that control the circuits; while the fluidic circuits are small (∼10–100 micron wide channels), the Medusa's head-like interface, consisting of external pneumatic solenoids and tubing or mechanical pins to control each independent valve, is larger by one to four orders of magnitude (∼ mm to cm). Consequently, the dream of using large scale integration in microfluidics for portable, high throughput applications has been stymied. By combining multi-layer soft-lithography with shape memory alloys (SMA), we demonstrate electronically activated microfluidic components such as valves, pumps, latches and multiplexers, that are assembled on printed circuit boards (PCBs). Thus, high density, electronically controlled microfluidic chips can be integrated alongside standard opto-electronic components on a PCB. Furthermore, we introduce the idea of microfluidic states, which are combinations of valve states, and analogous to instruction sets of integrated circuit (IC) microprocessors. Microfluidic states may be represented in hardware or software, and we propose a control architecture that results in logarithmic reduction of external control lines. These developments bring us closer to building microfluidic circuits that resemble electronic ICs both physically, as well as in their abstract model.

Graphical abstract: Electronic control of elastomeric microfluidic circuits with shape memory actuators

Supplementary files

Article information

Article type
Paper
Submitted
17 Mar 2008
Accepted
03 Jun 2008
First published
09 Jul 2008

Lab Chip, 2008,8, 1530-1535

Electronic control of elastomeric microfluidic circuits with shape memory actuators

S. Vyawahare, S. Sitaula, S. Martin, D. Adalian and A. Scherer, Lab Chip, 2008, 8, 1530 DOI: 10.1039/B804515A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements