Issue 10, 2024

Potential application of bismuth oxyiodide (BiOI) when it meets light

Abstract

Bismuth oxyiodide (BiOI) is a kind of typical two-dimensional (2D) material that has been increasingly developed alongside other 2D materials such as graphene, MXenes, and transition-metal dichalcogenide. However, its potential applications have not been widely whispered compared to those of other 2D materials. Using its distinctive properties, BiOI can be used for various applications, especially when it meets sunlight and other light-related electromagnetic waves. In this present review, we discuss the developments of BiOI and challenges in the applications for photodetector and light-assisted sensors, photovoltaic devices, optoelectronic logic devices, as well as photocatalysts. We start the discussion with a basic understanding and development of BiOI, crystal structure, and its properties. The synthesis and further development, such as green synthesis and its challenges in the synthesis-suited industry, as well as device integration, are also explained together with a plausible strategy to enhance the feasibility of BiOI for those various applications. We believe that the provided discussion and perspectives will not only promote BiOI to be one of the highly considered 2D materials but can also assist recent graduates in any materials science discipline and inform the senior scientists and industrial-based stakeholders of the latest advances in bismuth oxide and mixed-anion compounds.

Graphical abstract: Potential application of bismuth oxyiodide (BiOI) when it meets light

Article information

Article type
Review Article
Submitted
05 Jan 2024
Accepted
06 Feb 2024
First published
07 Feb 2024

Nanoscale, 2024,16, 5079-5106

Potential application of bismuth oxyiodide (BiOI) when it meets light

Z. Sun and T. Amrillah, Nanoscale, 2024, 16, 5079 DOI: 10.1039/D3NR06559F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements