Issue 8, 2007

Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients

Abstract

Emission fluorescence spectra were obtained for the adaxial and abaxial faces of dicotyledonous (Ficus benjamina L., Ficus elastica, Gardenia jasminoides and Hedera helix) and monocotyledonous leaves (Gladiolus spp. and Dracaena cincta bicolor). After correction by light-re-absorption processes, using a previously published physical model, the adaxial faces of dicotyledons showed a fluorescence ratio Fred/Ffar-red rather lower than the respective values for the abaxial faces. Monocotyledons and shade-adapted-plants showed similar values for the corrected fluorescence ratio for both faces. Even when differences in experimental fluorescence emission from adaxial and abaxial leaves in dicotyledons are mostly due to light re-absorption processes, the residual dissimilarity found after application of the correction model would point to the fact that fluorescence re-absorption is not the only responsible for the observed disparity. It was concluded that light re-absorption processes does not account entirely for the differences in the experimental emission spectra between adaxial and abaxial leaves. Differences that remains still present after correction might be interpreted in terms of a different photosystem ratio (PSII/PSI). Experiments at low temperature sustained this hypothesis. In dicotyledons, light reflectance for adaxial leaves was found to be lower than for the abaxial ones. It was mainly due to an increase in the scattering coefficient for the lower leaf-side. The absorption coefficient values were slightly higher for the upper leaf-side. During senescence of Ficus benjamina leaves, the scattering coefficient increased for both the upper and lower leaf-sides. With senescence time the absorption coefficient spectra broadened while the corrected fluorescence ratio (Fred/Ffar-red) decreased for both faces. The results pointed to a preferential destruction of photosystem II relative to photosystem I during senescence.

Graphical abstract: Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients

Article information

Article type
Paper
Submitted
04 Dec 2006
Accepted
29 May 2007
First published
20 Jun 2007

Photochem. Photobiol. Sci., 2007,6, 873-882

Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients

G. B. Cordón and M. G. Lagorio, Photochem. Photobiol. Sci., 2007, 6, 873 DOI: 10.1039/B617685B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements