Kohn–Sham density functional theory (KS-DFT) is nowadays the most widely used quantum chemical method for electronic structure calculations in chemistry and physics. Its further application in e.g. supramolecular chemistry or biochemistry has mainly been hampered by the inability of almost all current density functionals to describe the ubiquitous attractive long-range van der Waals (dispersion) interactions. We review here methods to overcome this defect, and describe in detail a very successful correction that is based on damped –C6·R–6 potentials (DFT-D). As examples we consider the non-covalent inter- and intra-molecular interactions in unsaturated organic molecules (so-called π–π stacking in benzenes and dyes), in biologically relevant systems (nucleic acid bases/pairs, proteins, and ‘folding’ models), between fluorinated molecules, between curved aromatics (corannulene and carbon nanotubes) and small molecules, and for the encapsulation of methane in water clusters. In selected cases we partition the interaction energies into the most relevant contributions from exchange-repulsion, electrostatics, and dispersion in order to provide qualitative insight into the binding character.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?