Volume 136, 2007

Crystal growth in nanoporous framework materials

Abstract

Future applications of nanoporous materials will be in opto-electronic devices, magnetic and chemical sensors, shape-selective and bio-catalysis, structural materials and nuclear waste management. Crucially, in all such applications, an understanding of crystal growth to the same depth as has been achieved in semiconductor technology is needed. Therefore, defects, intergrowths, dopants and isomorphous substitution must be controlled, and crystal habit and size (e.g. single crystal films) must be fabricated with precision. These goals elude the community because of lack of understanding of crystal growth processes. Modern microscopy techniques including AFM, ultra-high resolution SEM and HREM coupled with theoretical calculations are beginning to reveal the details of these growth processes yielding the important thermodynamic data crucial to effect synthetic control such as: controlling defects; controlling intergrowths; introducing chirality; modifying surface access; altering diffusion pathways; controlling crystal habit; synthesising templated materials cheaply in order to render them economically viable; controlling crystal size for instance as single crystal films. In this paper we will discuss recent results including: the details of surface alteration processes in nanoporous materials, measured in situ, under different chemical environments and the ability to switch processes on and off by the control of growth conditions. Further we illustrate an approach to theoretically model the crystal growth in such complex systems which ultimately delivers activation energies for fundamental growth processes.

Article information

Article type
Paper
Submitted
05 Dec 2006
Accepted
30 Jan 2007
First published
10 Apr 2007

Faraday Discuss., 2007,136, 143-156

Crystal growth in nanoporous framework materials

M. W. Anderson, J. R. Agger, L. I. Meza, C. B. Chong and C. S. Cundy, Faraday Discuss., 2007, 136, 143 DOI: 10.1039/B617782B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements