A.
Thirumurugan
,
M. B.
Avinash
and
C. N. R.
Rao
*
Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore, 560064, India. E-mail: cnrrao@jncasr.ac.in; Fax: +91-80-22082766, 22082766
First published on 24th November 2005
A systematic study has been carried out on the three isomeric cyclohexanedicarboxylates (CHDCs) formed by cadmium and manganese with the three isomeric dicarboxylic acids, in the presence or absence of amines. The CHDCs have been prepared under hydrothermal conditions and their structures established by X-ray crystallography. We have been able to isolate two-dimensional layered structures of 1,2-, 1,3- and 1,4-cyclohexanedicarboxylates and chain structures of 1,3- and 1,4-cyclohexanedicarboxylates. The infinite metal–oxygen–metal linkages are observed only in the case of the 1,2-dicarboxylate. In all the three isomeric cyclohexanedicarboxylates, the e,e conformation is most favored, although the 1,4-CHDCs often contain rings in both the e,e and the a,e conformations.
Thermogravimetric analysis (TGA) was carried out (Mettler-Toledo) in oxygen atmosphere (flow rate = 50 ml min−1) in the temperature range 25–900 °C (heating rate = 5 °C min−1). Infra-red (IR) spectroscopic studies have been carried out in the mid-IR region using KBr pellets (Bruker IFS-66v). The spectra show characteristic bands of the carboxylate units. Room temperature photoluminescence spectra of samples were recorded on powdered samples. A Perkin-Elmer spectrometer (LS-55) with a single beam set-up was employed using a xenon lamp (50 watt) as the source and a photo-multiplier tube as the detector. The temperature-dependent magnetic susceptibilities of IV, V and VIII were measured from 5 to 300 K in a constant magnetic field of 0.5 T.
A suitable single crystal of each compound was carefully selected under a polarizing microscope and glued to a thin glass fiber. Crystal structure determination by X-ray diffraction was performed on a Siemens Smart-CCD diffractometer equipped with a normal focus, 2.4 kW sealed tube X-ray source (Mo-Kα radiation, λ = 0.71073 Å) operating at 40 kV and 40 mA. An empirical absorption correction based on symmetry equivalent reflections was applied using the SADABS program.35 The structure was solved and refined using the SHELXTL-PLUS suite of program.35 All the hydrogen atoms of the carboxylic acids were located in the difference Fourier maps. For the final refinement the hydrogen atoms on the carboxylic acid were placed geometrically and held in the riding mode. Final refinement included atomic positions for all the atoms, anisotropic thermal parameters for all the non-hydrogen atoms except C(53)–C(57) in VII and C(2) in IX, and isotropic thermal parameters for the hydrogen atoms. All the hydrogen atoms were included in the final refinement for I, II, IV, VII, VIII and XI. The hydrogen atoms associated with the water molecules (coordinated or lattice water) of III, V, and VI were located from the difference Fourier maps, but not stable during refinement, hence these hydrogen atoms are excluded from the final refinement. Details of the structure solution and final refinements for the compounds I–IX are given in Tables 1–3. The powder XRD patterns of I–IX were recorded and were consistent with the patterns generated from single-crystal structure determination.
I | II | III | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a R 1 = ∑‖Fo| − |Fc‖/∑|Fo|. b wR 2 = {∑[w(Fo2 − Fc2)2]/∑[w(Fo2)2]}1/2; w = 1/[σ2(Fo)2 + (aP)2 + bP], P = [max.(Fo2,0) + 2(Fc)2]/3, where a = 0.545 and b = 4.8788 for I, a = 0.0394 and b = 10.4253 for II, and a = 0.0321 and b = 0.0 for III. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Empirical formula | C8H14CdO6 | C18H20CdN2O5 | C48H54Cd3N4O16 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M r | 318.59 | 456.76 | 1280.15 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal system | Monoclinic | Monoclinic | Triclinic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Space group | C2/c (no. 15) | C2/c (no. 15) |
P![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a/Å | 11.5724(3) | 17.3563(4) | 8.9419(2) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
b/Å | 5.4816(2) | 11.8464(3) | 11.9987(3) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
c/Å | 16.7944(4) | 18.3098(5) | 12.4863(2) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
α/° | 90 | 90 | 102.4650(10) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
β/° | 102.941(2) | 97.1720(10) | 91.7580(10) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
γ/° | 90 | 90 | 111.7710(10) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V/Å3 | 1038.30(5) | 3735.22(16) | 1205.70(5) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Z | 4 | 8 | 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
D c/g cm−3 | 2.038 | 1.624 | 1.763 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
µ/mm−1 | 2.110 | 1.200 | 1.387 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total data collected | 2104 | 7651 | 5149 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unique data | 753 | 2676 | 3440 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Observed data [I > 2σ(I)] | 735 | 2438 | 3118 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
R merg | 0.0376 | 0.0304 | 0.0179 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
R indexes [I > 2σ(I)] | R 1 = 0.0357;awR2 = 0.901b | R 1 = 0.0300;awR2 = 0.0805b | R 1 = 0.0210a; wR2 = 0.553b | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
R indexes (all data) | R 1 = 0.03704;awR2 = 0.913b | R 1 = 0.0327;awR2 = 0.0827b | R 1 = 0.0232a; wR2 = 0.0561b |
IV | V | VI | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a R 1 = ∑‖Fo| − |Fc‖/∑|Fo|. b wR 2 = {∑[w(Fo2 − Fc2)2]/∑[w(Fo2)2]}1/2; w = 1/[σ2(Fo)2 + (aP)2 + bP], P = [max.(Fo2,0) + 2(Fc)2]/3, where a = 0.0505 and b = 0.0 for IV, a = 0.0845 and b = 16.1649 for V, and a = 0.0185 and b = 7.0434 for IV. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Empirical formula | C48H54Mn3N4O16 | C48H54Mn3N4O16 | C8H16CdO7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M r | 1107.77 | 1107.77 | 336.61 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal system | Triclinic | Monoclinic | Orthorhombic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Space group |
P![]() |
C2/c (no. 15) | Pccn (no. 56) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a/Å | 8.8827(15) | 8.5210(4) | 13.1510 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
b/Å | 11.856(2) | 21.5643(10) | 20.4388(4) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
c/Å | 12.321(2) | 26.7853(12) | 8.5602(2) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
α/° | 76.791(2) | 90 | 90 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
β/° | 87.930(3) | 91.0070(10) | 90 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
γ/° | 68.309(2) | 90 | 90 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V/Å3 | 1172.1(3) | 4921.0(4) | 2300.81(7) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Z | 1 | 4 | 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
D c/g cm−3 | 1.569 | 1.495 | 1.943 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
µ/mm−1 | 0.874 | 0.833 | 1.916 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total data collected | 13718 | 10308 | 8944 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unique data | 5463 | 3546 | 1654 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Observed data [I > 2σ(I)] | 4366 | 2749 | 1479 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
R merg | 0.0281 | 0.0418 | 0.0329 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
R indexes [I > 2σ(I)] | R 1 = 0.0384;awR2 = 0.0907b | R 1 = 0.05777;awR2 = 0.1542b | R 1 = 0.0309;awR2 = 0.0670b | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
R indexes (all data) | R1 = 0.0519a; wR2 = 0.0954b | R1 = 0.0779a; wR2 = 0.1694b | R 1 = 0.0373;awR2 = 0.0705b |
VII | VIII | IX | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a R 1 = ∑‖Fo| − |Fc‖/∑|Fo|. b wR 2 = {∑[w(Fo2 − Fc2)2]/∑[w(Fo2)2]}1/2; w = 1/[σ2(Fo)2 + (aP)2 + bP], P = [max.(Fo2,0) + 2(Fc)2]/3, where a = 0.0665 and b = 13.3409 for VII, a = 0.0271 and b = 4.6127 for VIII, and a = 0.1345 and b = 0.0 for IX. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Empirical formula | C40H36Cd2N4O8 | C40H40Mn2N4O10 | C8H10CdO4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M r | 925.53 | 846.64 | 282.56 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal system | Monoclinic | Monoclinic | Monoclinic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Space group | P21/n (no. 14) | P21/c (no. 14) | C2/c (no. 15) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a/Å | 11.6099(2) | 9.8431(5) | 27.349(7) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
b/Å | 17.0455(2) | 17.6527(9) | 4.9842(12) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
c/Å | 18.5687(2) | 11.6066(5) | 12.627(3) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
β/° | 104.8900 | 104.0900(10) | 96.163(4) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
V/Å3 | 3551.29(8) | 1956.06(16) | 1711.3(7) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Z | 4 | 2 | 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
D c/g cm−3 | 1.731 | 1.437 | 2.193 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
µ/mm−1 | 1.259 | 0.708 | 2.528 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total data collected | 14758 | 8107 | 4868 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unique data | 5076 | 2804 | 1994 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Observed data [I > 2σ(I)] | 4509 | 2282 | 1575 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
R merg | 0.0416 | 0.0326 | 0.040 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
R indexes [I > 2σ(I)] | R 1 = 0.0500;awR2 = 0.1336b | R 1 = 0.0718;awR2 = 0.1430b | R 1 = 0.0843;awR2 = 0.2058b | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
R indexes (all data) | R 1 = 0.0556;awR2 = 0.1375b | R 1 = 0.0889;awR2 = 0.1504b | R 1 = 0.1004;awR2 = 0.2136b |
CCDC reference numbers 283059–283067.
For crystallographic data in CIF or other electronic format see DOI: 10.1039/b512843a
![]() | ||
Fig. 1 (a) Structure of [Cd(H2O)2(C8H10O4)], I and (b) the packing arrangement in I, viewed along the a axis. |
The cadmium 1,4-cyclohexanedicarboxylate [Cd(C8H10O4)(C10H8N2)]·H2O, II, is a two-dimensional layer structure (Fig. 2), formed by the connectivity of Cd2N4O8 dimers and the carboxylate groups. The asymmetric unit of II contains 27 non-hydrogen atoms. The cadmium atom is in a distorted pentagonal bipyramidal environment (CdN2O5) with the Cd–O bond distances in the 2.269(3)–2.624(3) Å range and Cd–N bond distances are 2.342(3) and 2.349(3) Å. The two nitrogens of the CdN2O5 polyhedron are from the terminal 2,2′-bipy molecule and the oxygens are from three different carboxylic acid groups with (11) or (21) connectivity.36 Two such polyhedra form an edge-sharing dimer by sharing the µ2 oxygen atom from a tridentate carboxylate (21). These dimers are connected to four other dimers by four acid molecules of two types with (2111) connectivity.36 Two of the carboxylate groups are in equatorial position (e,e), with a torsional angle (θ) of 7.83(4)° between the two carboxyl groups. The other is the (e,e) conformation with θ = 168.61(4)°. The 2,2′-bipy rings projects on both the sides of the layer and the structure is stabilized by interlayer π–π interaction (3.663(4) Å, 3.77(5)°) between the adjacent bipy molecules, besides hydrogen bonding between the lattice water molecules and the carboxylate oxygens (H⋯O 1.8(2) Å, O⋯O 2.834(6) Å and ∠O–H⋯O 164°).
![]() | ||
Fig. 2 (a) Structure of [Cd(C8H10O4)(C10H8N2)]·H2O, II and (b) view of the layered structure of II along the b axis. |
The cadmium 1,4-cyclohexanedicarboxylate, [Cd3(C8H10O4)3(C12H8N2)2]·4H2O, III, is a two-dimensional layer structure consisting of one-dimensional infinite chains made up of trinuclear Cd3N4O12 units connected by the carboxylate groups (Fig. 3). The asymmetric unit contains 36 non-hydrogen atoms. Two Cd atoms are in crystallographically independent sites with Cd(1) in an octahedral environment (CdO6) and Cd(2) is in a distorted pentagonal bipyramidal environment (CdN2O5). The Cd(1) atom sits on the twofold axis, on an inversion center, 1b. The Cd–O bond distances are in the 2.240(2)–2.602(3) Å range and the Cd–N bond distances are 2.331(2) and 2.377(2) Å. The oxygens of the Cd(1)O6 polyhedron are from six different carboxyl groups with either (11) or (21) connectivity.36 The two nitrogens of the Cd(2)N2O5 polyhedron are from the terminal 1,10-phen molecule and the five oxygens are from three different carboxyl groups with either (11) or (21) connectivity.36 The Cd(1)O6 polyhedron is connected to two different Cd(2)N2O5 polyhedra by sharing the edges to form a trinuclear Cd3N4O12 unit. Four of the µ2 oxygen atoms from four tridentate carboxylates (21) connect the three polyhedra. The trinuclear unit gets connected to two other similar units by four different carboxylates (2121) on either side giving rise to an infinite one-dimensional chain structure. Between the two carboxylate groups with (2121) connectivity,36 one is in axial position and the other is in equatorial position (a,e) and the torsional angle between the two carboxyl groups is 5.84(3)°. The infinite one-dimensional chains are connected with each other resulting in the infinite two-dimensional layer structure. The two carboxylate groups in the connecting acid with (1111) connectivity36 are in equatorial position (e,e) with a torsional angle of 180°. The lattice water molecules are between the layers and hydrogen bonded to the carboxylate oxygens. The structure is stabilized by interlayer π–π interaction (3.43(1) Å, 0.4°) between the 1,10-phen molecules.
![]() | ||
Fig. 3 (a) Structure of [Cd3(C8H10O4)3(C12H8N2)2]·4H2O, III viewed along the a axis and (b) structure of III viewed along the c axis (the rings in 1,10-phen molecules are not shown). |
We have also prepared a manganese derivative of 1,4-cyclohexanedicarboxylic acid, [Mn3(C8H10O4)3(C12H8N2)2]·4H2O, IV, where all the Mn(II) ions are six coordinated. IV has a two-dimensional structure similar to that of III (see Fig. 4). The Mn–O bond distances in IV are in the 2.121(2)–2.371(2) Å range and the Mn–N bond distances are 2.247(2) and 2.299(2) Å. Here the a,e conformer is with (2111) connectivity36 whereas it is (2121) in III. At 300 K, the µeff of Mn in IV is 3.35 µB, larger than the expected 3.13 µB for a magnetically isolated Mn(II) ions in the trinuclear model. The magnetic susceptibility, χm, fitted to the Curie–Weiss law, gave a Weiss temperature, θ, of −25.7 K for IV, which indicates weak antiferromagnetic interaction between the Mn(II) centres.
![]() | ||
Fig. 4 (a) Structure of [Mn3(C8H10O4)3(C12H8N2)2]·4H2O, IV viewed along the a axis and (b) the layered structure of IV (the rings in 1,10-phen molecules are not shown). |
![]() | ||
Fig. 5 (a) Structure of [Mn3(C8H10O4)3(C12H8N2)2]·4H2O, V, viewed along the a axis and (b) structure of V, viewed along the b axis. |
The cadmium 1,3-cyclohexanedicarboxylate, [Cd(H2O)2(C8H10O4)]·H2O, VI, has a two-dimensional layer structure (Fig. 6) formed by the connectivity between Cd2O13 dimers and the carboxylate groups. The asymmetric unit of VI contains 17 non-hydrogen atoms. The cadmium atom is in a distorted pentagonal bipyramidal environment (CdO7) with Cd–O bond distances in the 2.258(4)–2.607(4) Å range. The seven oxygens of the CdO6 polyhedron are from two coordinated water molecules and four different carboxylic acid groups with (2111) connectivity.36 Each CdO7 polyhedron shares an edge with another CdO7 polyhedron forming the Cd2O13 dimer. The dimers are connected with four other dimers by a carboxylate group with (11) connectivity,36 forming the infinite two-dimensional network. The cyclohexane rings project on both the sides of the layer. Both the carboxylate groups of the 1,3-cyclohexanedicarboxylate are in equatorial position (e,e) with a torsional angle of 6.11°. The two lattice water molecules are between the layers forming four-membered water clusters (Fig. 7). The O⋯O distances between the water molecules are in the 2.03(1)–2.59(1) range. The short O⋯O distance (2.03 Å) is due to the higher thermal parameter of the oxygen atoms (O100 and O200 with 0.5 occupancy factor). The O⋯O⋯O angles are 83.04(2) and 92.57(2)°. The adjustant clusters are twisted with respect to each other by 55.01(3)° and separated by a distance of 2.59(4) Å. The TGA curve of VI shows two weight losses. The first weight loss of 16.93% around 120 °C and the second weight loss of 49.26% around 380 °C match well with the loss of water molecules, and the cyclohexanedicarboxylate (calc. 16.04% and 50.50% respectively).
![]() | ||
Fig. 6 Structure of [Cd(H2O)2(C8H10O4)]·H2O, VI, viewed along the b axis. |
![]() | ||
Fig. 7 (a) The packing arrangement in [Cd(H2O)2(C8H10O4)]·H2O, VI and (b) the view of the water clusters in VI. The water molecules are connected by the dotted lines. |
The cadmium 1,3-cyclohexanedicarboxylate [Cd(C8H10O4)(C12H8N2)], VII, is also a two-dimensional layer structure consisting of an infinite two-dimensional network formed by the connectivity of Cd2N4O8 dimers and carboxylate groups (Fig. 8). The asymmetric unit contains 54 non-hydrogen atoms. The cadmium atom is in a distorted pentagonal bipyramidal environment (CdN2O5) with Cd–O bond distances in the 2.233(5)–2.702(5) Å range and Cd–N bond distances in the 2.362(4)–2.405(4) Å range. The two nitrogens of the CdN2O5 polyhedron are from the terminal 1,10-phen molecule and the oxygens are from three different carboxyl groups with (11) or (21) connectivity.36 Two such polyhedra form an edge-sharing dimer by sharing the µ2 oxygen atom from a tridentate carboxylate (21). The dimers get connected with four other dimers by the acid units of two types. In one type, two of the carboxylate groups are in equatorial position (e,e) with a torsional angle of 7.83(2)°. The other acid molecule appears as though they have a flattened chair conformation due to the disorder. The 1,10-phen rings project on both the sides of the layer. The structure is stabilized by intralayer π–π interaction (3.546(4) Å, 7.19(1)°) between the 1,10-phen molecules.
![]() | ||
Fig. 8 (a) Structure of [Cd(C8H10O4)(C12H8N2)],VII and (b) packing arrangement of in VI, viewed along the a axis. |
We have also obtained a zero-dimensional 1,3-cyclohexanedicarboxylate, [Mn(H2O)(C8H10O4)(C12H8N2)], VIII, containing 28 non-hydrogen atoms in the asymmetric unit. The Mn atom here is in a distorted octahedral environment (MnN2O4) with Mn–O bond distances in the 2.097(4)–2.264(5) Å range and the Mn–N bond distances are 2.244(5) and 2.265(5) Å. The two nitrogens of the MnN2O4 polyhedron are from the terminal 1,10-phen molecule. The oxygens are from one terminal coordinated water and the three remaining oxygens are from two different carboxylic acid groups with (11) or (10) connectivity.36 Two such polyhedra form a dimer (Fig. 9) with two dicarboxylates (1110 connectivity), where the two carboxylate groups are in equatorial position (e,e) with a torsional angle of 4.16(2)°. The structure is stabilized by intermolecular π–π interaction (3.89(1) Å, 0.56°) between the 1,10-phen molecules and intermolecular CH⋯π interaction between cyclohexane and 1,10-phen rings (3.24(1) Å, 5.83°). At 300 K, the µeff of Mn in VIII is 4.18 µB, larger than the expected 3.84 µB for a magnetically isolated Mn(II) ions in the model. Up to 300 K, the magnetic susceptibility, χm, could be fitted to the Curie–Weiss law, with a θ of −1.5 K. The small θ value suggests that compound is essentially paramagnetic with little or no antiferromagnetic interaction between the Mn ions.
![]() | ||
Fig. 9 (a) Structure of [Mn(H2O)(C8H10O4)(C12H8N2)], VIII and (b) packing arrangement in VIII viewed along the a axis. |
![]() | ||
Fig. 10 (a) Structure of [Cd(C8H10O4)],IX along the b axis and (b) structure of IX, showing the infinite M–O–M linkage. |
The four-membered ring in VIII is reminiscent of the four-membered secondary building unit in open framework phosphates.39–42 Whether the four-membered dicarboxylate VIII can transform to chain, layered and three-dimensional structures is to be explored. It is noteworthy that the zero- and one-dimensional metal carboxylates have been found to transform to two- and three-dimensional structures recently.38,43,44
All the CHDCs, I–IX, exhibit characteristic photoluminescence (PL) spectra while excited at 268 nm. The parent acids themselves show luminescence bands in the 350–385 nm region, while the aromatic amines show a emission band around 450 nm. The main PL band maxima of the Cd CHDCs are as follows: I, 460 nm, II, 422 nm, III, 389 nm, VI, 422 nm, VII, 390 nm, IX, 460 nm. The main PL band maxima of all the Mn CHDCs (IV, V and VIII) were at 422 nm. The Cd and Mn CHDCs exhibit a bathochromic shift with respect to the acids and a hypsochromic shift with respect to the amines. The hypsochromic shift of the emission bands of the compounds with respect to the 1,10-phen and 2,2′-bipy, may be because chelation of the ligand to the metal ion increases the rigidity, thereby reducing the loss of energy by radiationless decay of the intraligand emission excited state.
Footnote |
† Electronic supplementary information (ESI) available: Tables S1–S9: Selected bond distances and angles for I–IX. Fig. S1: Plots of experimental μeffvs. T and 1/χmvs. T of IV, V and VIII. Fig. S2: Photoluminescence spectra of I–IX. See DOI: 10.1039/b512843a |
This journal is © The Royal Society of Chemistry 2006 |